Patents by Inventor John A. Petri

John A. Petri has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11661558
    Abstract: The process and apparatus of the disclosure utilize a heater between a hydroprocessing reactor and a hydroisomerization reactor. A hydroprocessing feed exchanger cools hydroprocessed effluent to effect turndown of heated hydroprocessed effluent so as to not feed the hydroprocessed effluent to the hydroisomerization reactor at a higher temperature than necessary.
    Type: Grant
    Filed: December 29, 2020
    Date of Patent: May 30, 2023
    Assignee: UOP LLC
    Inventors: Kiran Ladkat, Pallavi Luharuka, John A. Petri, Ashwin Singh Tensingh, Yoga R Ayar
  • Patent number: 11572515
    Abstract: A hydrocracking process is disclosed. The hydrocracking process comprises hydrocracking a hydrocarbon feed stream in a hydrocracking reactor in the presence of a hydrogen stream and a hydrocracking catalyst to produce a hydrocracked effluent stream. The hydrocracked effluent stream is separated in a separator to provide a vapor hydrocracked stream and a liquid hydrocracked stream. The liquid hydrocracked stream is fractionated to provide a naphtha stream, a kerosene stream having a T90 temperature of about 204° C. (399° F.) to about 238° C. (460° F.), a diesel stream having a T90 temperature of about 360° C. (680° F.) to about 383° C. (721° F.) and an unconverted oil stream. The kerosene stream, the unconverted oil stream, and a portion of the diesel stream is recycled to the hydrocracking reactor for hydrocracking.
    Type: Grant
    Filed: December 31, 2020
    Date of Patent: February 7, 2023
    Assignee: UOP LLC
    Inventors: Massimo Sangalli, John A. Petri, Magaly Estremera, Yoga R Ayar
  • Publication number: 20220204877
    Abstract: A hydrocracking process is disclosed. The hydrocracking process comprises hydrocracking a hydrocarbon feed stream in a hydrocracking reactor in the presence of a hydrogen stream and a hydrocracking catalyst to produce a hydrocracked effluent stream. The hydrocracked effluent stream is separated in a separator to provide a vapor hydrocracked stream and a liquid hydrocracked stream. The liquid hydrocracked stream is fractionated to provide a naphtha stream, a kerosene stream having a T90 temperature of about 204° C. (399° F.) to about 238° C. (460° F.), a diesel stream having a T90 temperature of about 360° C. (680° F.) to about 383° C. (721° F.) and an unconverted oil stream. The kerosene stream, the unconverted oil stream, and a portion of the diesel stream is recycled to the hydrocracking reactor for hydrocracking.
    Type: Application
    Filed: December 31, 2020
    Publication date: June 30, 2022
    Inventors: Massimo Sangalli, John A. Petri, Magaly Estremera, Yoga R. Ayar
  • Publication number: 20220056352
    Abstract: The process and apparatus of the disclosure utilize a heater between a hydroprocessing reactor and a hydroisomerization reactor. A hydroprocessing feed exchanger cools hydroprocessed effluent to effect turndown of heated hydroprocessed effluent so as to not feed the hydroprocessed effluent to the hydroisomerization reactor at a higher temperature than necessary.
    Type: Application
    Filed: December 29, 2020
    Publication date: February 24, 2022
    Inventors: Kiran Ladkat, Pallavi Luharuka, John A. Petri, Ashwin Singh Tensingh, Yoga R. Ayar
  • Patent number: 10829703
    Abstract: Process and apparatus for producing a naphtha stream is provided. The process comprises providing a kerosene stream to a hydrocracking reactor. The kerosene stream is hydrocracked in the presence of a hydrogen stream and a hydrocracking catalyst in the hydrocracking reactor at hydrocracking conditions comprising a hydrocracking pressure, a hydrocracking temperature, and a liquid hourly space velocity at a net conversion of at least about 90%, to provide a hydrocracked effluent stream comprising liquefied petroleum gas, heavy naphtha fraction and light naphtha fraction. One or more of the hydrocracking conditions are adjusted to maintain a ratio of the light naphtha fraction to the heavy naphtha fraction of at least about 2 by weight, suitably at least about 2.2 and preferably at least about 2.5 in the hydrocracked effluent stream while maintaining the net conversion of at least about 90%.
    Type: Grant
    Filed: September 29, 2018
    Date of Patent: November 10, 2020
    Inventors: John A. Petri, Bryan K. Glover, Andrea G. Bozzano, Mary Jo Wier
  • Patent number: 10711207
    Abstract: Slurry hydrocracking processes are described. The methods include hydrotreating a heavy residual hydrocarbon feed in a hydrotreating zone under residual hydrotreating conditions to form a hydrotreated effluent. The hydrotreated effluent is separated in an first separator to form an overhead vapor stream and a bottoms stream. The bottoms stream is hydrocracked in a slurry hydrocracking zone under slurry hydrocracking conditions. The effluent from the slurry hydrocracking zone is fractionated in a fractionation zone into at least two streams. Slurry hydrocracking apparatus is also described.
    Type: Grant
    Filed: October 22, 2014
    Date of Patent: July 14, 2020
    Assignee: UOP LLC
    Inventors: Ping Sun, John A. Petri
  • Publication number: 20200102511
    Abstract: Process and apparatus for producing a naphtha stream is provided. The process comprises providing a kerosene stream to a hydrocracking reactor. The kerosene stream is hydrocracked in the presence of a hydrogen stream and a hydrocracking catalyst in the hydrocracking reactor at hydrocracking conditions comprising a hydrocracking pressure, a hydrocracking temperature, and a liquid hourly space velocity at a net conversion of at least about 90%, to provide a hydrocracked effluent stream comprising liquefied petroleum gas, heavy naphtha fraction and light naphtha fraction. One or more of the hydrocracking conditions are adjusted to maintain a ratio of the light naphtha fraction to the heavy naphtha fraction of at least about 2 by weight, suitably at least about 2.2 and preferably at least about 2.5 in the hydrocracked effluent stream while maintaining the net conversion of at least about 90%.
    Type: Application
    Filed: September 29, 2018
    Publication date: April 2, 2020
    Inventors: John A. Petri, Bryan K. Glover, Andrea G. Bozzano, Mary Jo Wier
  • Patent number: 10472577
    Abstract: A catalyst composition comprising a support comprising a mixture of amorphous silica-alumina and non-zeolitic alumina comprising no more than 75 wt % amorphous silica-alumina and having a ratio of moles of silicon to moles of aluminum in the range of about 0.05 to about 0.50. A first hydrogenation metal comprising platinum, a second hydrogenation metal from Group VIIB or Group VIII of the Periodic Table other than platinum and an optional third metal from Group IA of the Periodic Table may be deposited on the support. The ratio of moles of silicon to the moles of the first hydrogenation metal, the second hydrogenation metal and the optional third metal on the support may be between about 15 and about 75.
    Type: Grant
    Filed: June 22, 2017
    Date of Patent: November 12, 2019
    Assignee: UOP LLC
    Inventors: Antoine Negiz, Shurong Yang, Richard R. Willis, Gregory J. Gajda, Suheil F. Abdo, Lisa M. Knight, Hayim Abrevaya, John A. Petri
  • Patent number: 10472581
    Abstract: A process and apparatus for quenching a hydrocracked stream to prepare it for hydroisomerization. A fractionated hydroisomerized stream is recycled to quench a hot hydrocracked stream prior to hydroisomerization. Sufficient quenching can inactivate the hydroisomerization catalyst bed. The hydroisomerization catalyst bed can be heated back to hydroisomerization temperature and can actively hydroisomerize again.
    Type: Grant
    Filed: June 13, 2017
    Date of Patent: November 12, 2019
    Assignee: UOP LLC
    Inventors: Sailesh B. Kumar, Andrew J. Towarnicky, Vasant P. Thakkar, Massimo Sangalli, John A. Petri
  • Publication number: 20180002616
    Abstract: A process and apparatus for quenching a hydrocracked stream to prepare it for hydroisomerization. A fractionated hydroisomerized stream is recycled to quench a hot hydrocracked stream prior to hydroisomerization. Sufficient quenching can inactivate the hydroisomerization catalyst bed. The hydroisomerization catalyst bed can be heated back to hydroisomerization temperature and can actively hydroisomerize again.
    Type: Application
    Filed: June 13, 2017
    Publication date: January 4, 2018
    Inventors: Sailesh B. Kumar, Andrew J. Towarnicky, Vasant P. Thakkar, Massimo Sangalli, John A. Petri
  • Patent number: 9453169
    Abstract: A process for converting Fischer-Tropsch liquids and waxes into lubricant base stock and/or transportation fuels is disclosed. The process includes the steps of feeding a Fischer-Tropsch wax to a first isomerization unit to produce an isomerized Fischer-Tropsch wax product; combining a Fischer-Tropsch liquid with the isomerized Fischer-Tropsch wax product to create a mixture of the Fischer-Tropsch liquid and the Fischer-Tropsch wax product; and feeding the mixture to a fractionation column to separate the mixture into a lubricant base stock fraction and at least one transportation fuel fraction.
    Type: Grant
    Filed: September 13, 2013
    Date of Patent: September 27, 2016
    Assignee: UOP LLC
    Inventors: Kenneth J. Stippich, Jr., Vasant P. Thakkar, John A. Petri
  • Publication number: 20160115400
    Abstract: Slurry hydrocracking processes are described. The methods include hydrotreating a heavy residual hydrocarbon feed in a hydrotreating zone under residual hydrotreating conditions to form a hydrotreated effluent. The hydrotreated effluent is separated in an first separator to form an overhead vapor stream and a bottoms stream. The bottoms stream is hydrocracked in a slurry hydrocracking zone under slurry hydrocracking conditions. The effluent from the slurry hydrocracking zone is fractionated in a fractionation zone into at least two streams. Slurry hydrocracking apparatus is also described.
    Type: Application
    Filed: October 22, 2014
    Publication date: April 28, 2016
    Inventors: Ping Sun, John A. Petri
  • Publication number: 20150076033
    Abstract: A process for converting Fischer-Tropsch liquids and waxes into lubricant base stock and/or transportation fuels is disclosed. The process includes the steps of feeding a Fischer-Tropsch wax to a first isomerization unit to produce an isomerized Fischer-Tropsch wax product; combining a Fischer-Tropsch liquid with the isomerized Fischer-Tropsch wax product to create a mixture of the Fischer-Tropsch liquid and the Fischer-Tropsch wax product; and feeding the mixture to a fractionation column to separate the mixture into a lubricant base stock fraction and at least one transportation fuel fraction.
    Type: Application
    Filed: September 13, 2013
    Publication date: March 19, 2015
    Applicant: UOP LLC
    Inventors: Kenneth J. Stippich, Jr., Vasant P. Thakkar, John A. Petri
  • Patent number: 8911694
    Abstract: Two-stage hydroprocessing uses a common dividing wall fractionator. Hydroprocessed effluents from both stages of hydroprocessing are fed to opposite sides of the dividing wall.
    Type: Grant
    Filed: September 30, 2010
    Date of Patent: December 16, 2014
    Assignee: UOP LLC
    Inventors: John A. Petri, Vedula K. Murty, Peter Kokayeff
  • Publication number: 20140127647
    Abstract: Method, computer program product, and system to perform an operation for a deep question answering system. The operation begins by computing a concept score for a first concept in a first case received by the deep question answering system, the concept score being based on a machine learning concept model for the first concept. The operation then excludes the first concept from consideration when analyzing a candidate answer and an item of supporting evidence to generate a response to the first case upon determining that the concept score does not exceed a predefined concept minimum weight threshold. The operation then increases a weight applied to the first concept when analyzing the candidate answer and the item of supporting evidence to generate the response to the first case when the concept score exceeds a predefined maximum weight threshold.
    Type: Application
    Filed: December 5, 2012
    Publication date: May 8, 2014
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: John A. Petri, Richard J. Stevens
  • Publication number: 20140129492
    Abstract: Method, computer program product, and system to perform an operation for a deep question answering system. The operation begins by computing a concept score for a first concept in a first case received by the deep question answering system, the concept score being based on a machine learning concept model for the first concept. The operation then excludes the first concept from consideration when analyzing a candidate answer and an item of supporting evidence to generate a response to the first case upon determining that the concept score does not exceed a predefined concept minimum weight threshold. The operation then increases a weight applied to the first concept when analyzing the candidate answer and the item of supporting evidence to generate the response to the first case when the concept score exceeds a predefined maximum weight threshold.
    Type: Application
    Filed: November 8, 2012
    Publication date: May 8, 2014
    Applicant: International Business Machines Corporation
    Inventors: John A. Petri, Richard J. Stevens
  • Patent number: 8709238
    Abstract: Crude tall oil is subjected to a distillation process that substantially removes impurities. The process produces a combined pitch and a distillate of free fatty acids and rosin acids from two vacuum columns. The distillate stream is amenable to further downstream hydroprocessing.
    Type: Grant
    Filed: May 18, 2012
    Date of Patent: April 29, 2014
    Assignee: UOP LLC
    Inventor: John A. Petri
  • Patent number: 8691082
    Abstract: Two-stage hydroprocessing uses a common dividing wall fractionator. Hydroprocessed effluents from both stages of hydroprocessing are fed to opposite sides of the dividing wall.
    Type: Grant
    Filed: September 30, 2010
    Date of Patent: April 8, 2014
    Assignee: UOP LLC
    Inventors: John A. Petri, Vedula K. Murty, Peter Kokayeff
  • Publication number: 20140005450
    Abstract: Methods of making synthetic distillate fuel are described. The methods involve the use of an absorbent bed of molecular sieves which adsorb the n-paraffins from a distillate fuel cut. This allows the distillate fuel true boiling point cut point on the distillation column to increase to a higher temperature to make a distillate fuel which meets all of the synthetic paraffinic kerosene (SPK) or synthetic diesel specifications on distillation as well as the cold flow property specification, such as freeze point for SPK or cloud point, cold filter plugging point and pour point for synthetic diesel. This approach could improve aviation fuel yields by about 5 to about 10% and synthetic diesel yields up to 20%.
    Type: Application
    Filed: June 29, 2012
    Publication date: January 2, 2014
    Applicant: UOP LLC
    Inventors: Terry L. Marker, John A. Petri, Charles P. Luebke, Tom N. Kalnes, Michael J. McCall
  • Patent number: 8608947
    Abstract: A process is provided to produce an ultra low sulfur diesel using a two stage hydrotreating reaction zone. The first stage hydrotreater may operate with a continuous liquid phase.
    Type: Grant
    Filed: September 30, 2010
    Date of Patent: December 17, 2013
    Assignee: UOP LLC
    Inventors: John A. Petri, Vedula K. Murty, Peter Kokayeff