Patents by Inventor John A. Ransom

John A. Ransom has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230272344
    Abstract: The methods of the invention employ targeted magnetic particles, preferably targeted nanomagnetic particles, and targeted buoyant particles such as buoyant microparticles and microbubbles. Among the benefits of the invention is the ability to combine targeted magnetic particles with differentially targeted buoyant particles to achieve separation of two or more specifically cell targeted populations during the same work flow.
    Type: Application
    Filed: January 19, 2023
    Publication date: August 31, 2023
    Applicant: BIOLEGEND, INC.
    Inventors: DHANESH GOHEL, HONG ZHANG, JOHN RANSOM
  • Publication number: 20230160884
    Abstract: Processes and compositions are described for preparing new, colloidally stable, coated nanomagnetic particles useful for both in-vitro and in-vivo biomedical applications, including cell targeting and capturing cells, microorganisms, and cellular organelles or entities such as exosomes. These nanomagnetic particles can also be used as imaging contrast agents due to their small size and high magnetic moment. The nanomagnetic particles include a series of sequentially added, stabilizing surface coatings rendered onto nano-sized magnetic crystal clusters (e.g., magnetite particles) to impart colloidal stability in complex biological samples with minimal leaching of the coating materials, high binding capacity, and low non-specific binding. Another benefit of this invention is the ability to utilize both external and internal magnetic field-generating separation devices to effect separation of the magnetic nanoparticles.
    Type: Application
    Filed: January 19, 2023
    Publication date: May 25, 2023
    Applicant: BIOLEGEND, INC.
    Inventors: DHANESH GOHEL, HONG ZHANG, JOHN RANSOM
  • Patent number: 11630104
    Abstract: Processes and compositions are described for preparing new, colloidally stable, coated nanomagnetic particles useful for both in-vitro and in-vivo biomedical applications, including cell targeting and capturing cells, microorganisms, and cellular organelles or entities such as exosomes. These nanomagnetic particles can also be used as imaging contrast agents due to their small size and high magnetic moment. The nanomagnetic particles include a series of sequentially added, stabilizing surface coatings rendered onto nano-sized magnetic crystal clusters (e.g., magnetite particles) to impart colloidal stability in complex biological samples with minimal leaching of the coating materials, high binding capacity, and low non-specific binding. Another benefit of this invention is the ability to utilize both external and internal magnetic field-generating separation devices to effect separation of the magnetic nanoparticles.
    Type: Grant
    Filed: December 18, 2019
    Date of Patent: April 18, 2023
    Assignee: BIOLEGEND, INC.
    Inventors: Dhanesh Gohel, Hong Zhang, John Ransom
  • Patent number: 11608489
    Abstract: The methods of the invention employ targeted magnetic particles, preferably targeted nanomagnetic particles, and targeted buoyant particles such as buoyant microparticles and microbubbles. Among the benefits of the invention is the ability to combine targeted magnetic particles with differentially targeted buoyant particles to achieve separation of two or more specifically cell targeted populations during the same work flow.
    Type: Grant
    Filed: April 30, 2017
    Date of Patent: March 21, 2023
    Assignee: BIOLEGEND, INC.
    Inventors: Dhanesh Gohel, Hong Zhang, John Ransom
  • Publication number: 20210335607
    Abstract: A method of forming a semiconductor structure, the method comprises: providing a non-planar surface in the manufacturing of a silicon carbide (SiC) device; depositing a reflowable dielectric material on said non-planar surface; and heating said reflowable dielectric material to a temperature and for a time sufficient to cause reflowing of said reflowable dielectric material and thereby provide a dielectric layer comprising a substantially planar surface, wherein said dielectric layer is substantially free of voids.
    Type: Application
    Filed: April 22, 2020
    Publication date: October 28, 2021
    Inventors: Daniel Mauch, Yon Lee, John Ransom, Stephen Duran
  • Publication number: 20200200746
    Abstract: Processes and compositions are described for preparing new, colloidally stable, coated nanomagnetic particles useful for both in-vitro and in-vivo biomedical applications, including cell targeting and capturing cells, microorganisms, and cellular organelles or entities such as exosomes. These nanomagnetic particles can also be used as imaging contrast agents due to their small size and high magnetic moment. The nanomagnetic particles include a series of sequentially added, stabilizing surface coatings rendered onto nano-sized magnetic crystal clusters (e.g., magnetite particles) to impart colloidal stability in complex biological samples with minimal leaching of the coating materials, high binding capacity, and low non-specific binding. Another benefit of this invention is the ability to utilize both external and internal magnetic field-generating separation devices to effect separation of the magnetic nanoparticles.
    Type: Application
    Filed: December 18, 2019
    Publication date: June 25, 2020
    Inventors: Dhanesh GOHEL, Hong ZHANG, John RANSOM
  • Patent number: 10585088
    Abstract: Processes and compositions are described for preparing new, colloidally stable, coated nanomagnetic particles useful for both in-vitro and in-vivo biomedical applications, including cell targeting and capturing cells, microorganisms, and cellular organelles or entities such as exosomes. These nanomagnetic particles can also be used as imaging contrast agents due to their small size and high magnetic moment. The nanomagnetic particles include a series of sequentially added, stabilizing surface coatings rendered onto nano-sized magnetic crystal clusters (e.g., magnetite particles) to impart colloidal stability in complex biological samples with minimal leaching of the coating materials, high binding capacity, and low non-specific binding. Another benefit of this invention is the ability to utilize both external and internal magnetic field-generating separation devices to effect separation of the magnetic nanoparticles.
    Type: Grant
    Filed: April 30, 2016
    Date of Patent: March 10, 2020
    Assignee: BioLegend, Inc.
    Inventors: Dhanesh Gohel, Hong Zhang, John Ransom
  • Patent number: 10545138
    Abstract: Processes and compositions are described for preparing new, colloidally stable, coated nanomagnetic particles useful for both in-vitro and in-vivo biomedical applications, including cell targeting and capturing cells, microorganisms, and cellular organelles or entities such as exosomes. These nanomagnetic particles can also be used as imaging contrast agents due to their small size and high magnetic moment. The nanomagnetic particles include a series of sequentially added, stabilizing surface coatings rendered onto nano-sized magnetic crystal clusters (e.g., magnetite particles) to impart colloidal stability in complex biological samples with minimal leaching of the coating materials, high binding capacity, and low non-specific binding. Another benefit of this invention is the ability to utilize both external and internal magnetic field-generating separation devices to effect separation of the magnetic nanoparticles.
    Type: Grant
    Filed: April 30, 2016
    Date of Patent: January 28, 2020
    Assignee: BioLegend, Inc.
    Inventors: Dhanesh Gohel, Hong Zhang, John Ransom
  • Publication number: 20190127697
    Abstract: Processes and compositions are provided for performing magnetibuoyant separations of different biomolecules (e.g., cells, organelles, etc.) in a biological sample, as well as compositions and kits for performing such methods. Compositions containing the separated biomolecules, and methods for using the same for in-vitro and in-vivo biomedical applications, are also provided. The magnetibuoyant methods of the invention employ targeted magnetic particles, preferably targeted nanomagnetic particles, and targeted buoyant particles such as buoyant microparticles and microbubbles. Among the benefits of the invention is the ability to combine targeted magnetic particles with differentially targeted buoyant particles to achieve separation of two or more specifically cell targeted populations during the same work flow.
    Type: Application
    Filed: April 30, 2017
    Publication date: May 2, 2019
    Inventors: Dhanesh GOHEL, Hong ZHANG, John RANSOM
  • Publication number: 20160320376
    Abstract: Processes and compositions are described for preparing new, colloidally stable, coated nanomagnetic particles useful for both in-vitro and in-vivo biomedical applications, including cell targeting and capturing cells, microorganisms, and cellular organelles or entities such as exosomes. These nanomagnetic particles can also be used as imaging contrast agents due to their small size and high magnetic moment. The nanomagnetic particles include a series of sequentially added, stabilizing surface coatings rendered onto nano-sized magnetic crystal clusters (e.g., magnetite particles) to impart colloidal stability in complex biological samples with minimal leaching of the coating materials, high binding capacity, and low non-specific binding. Another benefit of this invention is the ability to utilize both external and internal magnetic field-generating separation devices to effect separation of the magnetic nanoparticles.
    Type: Application
    Filed: April 30, 2016
    Publication date: November 3, 2016
    Inventors: Dhanesh GOHEL, Hong ZHANG, John RANSOM
  • Patent number: 8093121
    Abstract: An electrostatic discharge (ESD) transistor structure includes a self-aligned outrigger less than 0.4 microns from a gate electrode that is 50 microns wide. The outrigger is fabricated on ordinary logic transistors of an integrated circuit without severely affecting the performance of the transistors. The outrigger is used as an implant blocking structure to form first and second drain regions on either side of a lightly doped region that underlies the outrigger. The self-aligned outrigger and the lightly doped region beneath it are used to move the location of avalanche breakdown upon an ESD event away from the channel region. Durability is extended when fewer “hot carrier” electrons accumulate in the gate oxide. A current of at least 100 milliamperes can flow into the drain and then through the ESD transistor structure for a period of more than 30 seconds without causing a catastrophic failure of the ESD transistor structure.
    Type: Grant
    Filed: September 29, 2011
    Date of Patent: January 10, 2012
    Assignee: IXYS CH GmbH
    Inventors: John A. Ransom, Brett D. Lowe, Michael J. Westphal
  • Patent number: 8062941
    Abstract: An electrostatic discharge (ESD) transistor structure includes a self-aligned outrigger less than 0.4 microns from a gate electrode that is 50 microns wide. The outrigger is fabricated on ordinary logic transistors of an integrated circuit without severely affecting the performance of the transistors. The outrigger is used as an implant blocking structure to form first and second drain regions on either side of a lightly doped region that underlies the outrigger. The self-aligned outrigger and the lightly doped region beneath it are used to move the location of avalanche breakdown upon an ESD event away from the channel region. Durability is extended when fewer “hot carrier” electrons accumulate in the gate oxide. A current of at least 100 milliamperes can flow into the drain and then through the ESD transistor structure for a period of more than 30 seconds without causing a catastrophic failure of the ESD transistor structure.
    Type: Grant
    Filed: April 2, 2011
    Date of Patent: November 22, 2011
    Assignee: IXYS CH GmbH
    Inventors: John A. Ransom, Brett D. Lowe, Michael J. Westphal
  • Patent number: 7987421
    Abstract: To display content in a user's preferred language, a content provider locates a layout information file to determine how to display the content. A layout strings file storing a layout string in a specific language is selected, according to the user's preferred languages. The content from a content provider and the layout string are then formatted as specified by the layout information file, and presented to the user.
    Type: Grant
    Filed: January 30, 2002
    Date of Patent: July 26, 2011
    Inventors: Boyd H Timothy, Olin Sayre Atkinson, Christopher Jean Seiler, Matthew Gerrit Brooks, Shawn Matthew Holmstead, John Ransom VanOrman, II, James Mark Norman
  • Patent number: 7927944
    Abstract: An electrostatic discharge (ESD) transistor structure includes a self-aligned outrigger less than 0.4 microns from a gate electrode that is 50 microns wide. The outrigger is fabricated on ordinary logic transistors of an integrated circuit without severely affecting the performance of the transistors. The outrigger is used as an implant blocking structure to form first and second drain regions on either side of a lightly doped region that underlies the outrigger. The self-aligned outrigger and the lightly doped region beneath it are used to move the location of avalanche breakdown upon an ESD event away from the channel region. Durability is extended when fewer “hot carrier” electrons accumulate in the gate oxide. A current of at least 100 milliamperes can flow into the drain and then through the ESD transistor structure for a period of more than 30 seconds without causing a catastrophic failure of the ESD transistor structure.
    Type: Grant
    Filed: September 10, 2010
    Date of Patent: April 19, 2011
    Assignee: IXYS CH GmbH
    Inventors: John A. Ransom, Brett D. Lowe, Michael J. Westphal
  • Patent number: 7884489
    Abstract: An insulative substrate includes a plurality of flexible retaining clips and a plurality of alignment and retaining pins. A metal leadframe includes a plurality of leads. Each lead terminates in a spring contact beam portion. The leadframe is attached to the substrate (for example, by fitting a hole in each lead over a corresponding alignment and retaining pin and then thermally deforming the pin to hold the lead in place). An integrated circuit is press-fit down through the retaining clips such that pads on the face side of the integrated circuit contact and compress the spring contact beams of the leads. After the press-fit step, the retaining clips hold the integrated circuit in place. The resulting assembly is encapsulated. In a cutting and bending step, the leads are singulated and formed to have a desired shape. The resulting low-cost package involves no wire-bonding and no flip-chip bond bump forming steps.
    Type: Grant
    Filed: January 12, 2010
    Date of Patent: February 8, 2011
    Assignee: IXYS CH GmbH
    Inventors: Thomas Stortini, John A. Ransom
  • Patent number: 7807528
    Abstract: An electrostatic discharge (ESD) transistor structure includes a self-aligned outrigger less than 0.4 microns from a gate electrode that is 50 microns wide. The outrigger is fabricated on ordinary logic transistors of an integrated circuit without severely affecting the performance of the transistors. The outrigger is used as an implant blocking structure to form first and second drain regions on either side of a lightly doped region that underlies the outrigger. The self-aligned outrigger and the lightly doped region beneath it are used to move the location of avalanche breakdown upon an ESD event away from the channel region. Durability is extended when fewer “hot carrier” electrons accumulate in the gate oxide. A current of at least 100 milliamperes can flow into the drain and then through the ESD transistor structure for a period of more than 30 seconds without causing a catastrophic failure of the ESD transistor structure.
    Type: Grant
    Filed: March 24, 2009
    Date of Patent: October 5, 2010
    Assignee: ZiLOG, Inc.
    Inventors: John A. Ransom, Brett D. Lowe, Michael J. Westphal
  • Patent number: 7683494
    Abstract: An insulative substrate includes a plurality of flexible retaining clips and a plurality of alignment and retaining pins. A metal leadframe includes a plurality of leads. Each lead terminates in a spring contact beam portion. The leadframe is attached to the substrate (for example, by fitting a hole in each lead over a corresponding alignment and retaining pin and then thermally deforming the pin to hold the lead in place). An integrated circuit is press-fit down through the retaining clips such that pads on the face side of the integrated circuit contact and compress the spring contact beams of the leads. After the press-fit step, the retaining clips hold the integrated circuit in place. The resulting assembly is encapsulated. In a cutting and bending step, the leads are singulated and formed to have a desired shape. The resulting low-cost package involves no wire-bonding and no flip-chip bond bump forming steps.
    Type: Grant
    Filed: June 18, 2008
    Date of Patent: March 23, 2010
    Assignee: ZiLOG, Inc.
    Inventors: Thomas Stortini, John A. Ransom
  • Patent number: 7508038
    Abstract: An electrostatic discharge (ESD) transistor structure includes a self-aligned outrigger less than 0.4 microns from a gate electrode that is 50 microns wide. The outrigger is fabricated on ordinary logic transistors of an integrated circuit without severely affecting the performance of the transistors. The outrigger is used as an implant blocking structure to form first and second drain regions on either side of a lightly doped region that underlies the outrigger. The self-aligned outrigger and the lightly doped region beneath it are used to move the location of avalanche breakdown upon an ESD event away from the channel region. Durability is extended when fewer “hot carrier” electrons accumulate in the gate oxide. A current of at least 100 milliamperes can flow into the drain and then through the ESD transistor structure for a period of more than 30 seconds without causing a catastrophic failure of the ESD transistor structure.
    Type: Grant
    Filed: April 29, 2005
    Date of Patent: March 24, 2009
    Assignee: ZiLOG, Inc.
    Inventors: John A. Ransom, Brett D. Lowe, Michael J. Westphal
  • Publication number: 20050249635
    Abstract: A system and method of mixing and injecting discrete sample mixtures into a flow cytometer or other sample analysis apparatus may generally comprise a sample injection guide coupling a liquid handling apparatus with a sample analysis apparatus and facilitating injection of discrete sample mixtures into a fluidic system of the apparatus.
    Type: Application
    Filed: May 7, 2004
    Publication date: November 10, 2005
    Applicant: Novasite Pharmaceuticals, Inc.
    Inventors: Alex Okun, Teresa Bennett, Andrew Beemink, David Sieg, John Ransom
  • Publication number: 20050249642
    Abstract: A system and method of mixing and injecting discrete sample mixtures into a flow cytometer or other sample analysis apparatus may generally comprise a sample injection guide coupling a liquid handling apparatus with a sample analysis apparatus and facilitating injection of discrete sample mixtures into a fluidic system of the apparatus.
    Type: Application
    Filed: May 7, 2004
    Publication date: November 10, 2005
    Applicant: Novasite Pharmaceuticals, Inc.
    Inventors: Alex Okun, John Ransom