Patents by Inventor John A. Robbins

John A. Robbins has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10118917
    Abstract: Disclosed are compounds of Formula 1, including all stereoisomers, N-oxides, and salts thereof, wherein X is O, S or NR5; or X is —C(R6)?C(R7)—, wherein the carbon atom bonded to R6 is also bonded to the carbon atom bonded to R4, and the carbon atom bonded to R7 is also bonded to the phenyl ring moiety in Formula 1; and R1, R2, R3, R4, R5, R6, R7, G and W are as defined in the disclosure. Also disclosed are compositions containing the compounds of Formula 1 and methods for controlling undesired vegetation comprising contacting the undesired vegetation or its environment with an effective amount of a compound or a composition of the invention.
    Type: Grant
    Filed: April 27, 2015
    Date of Patent: November 6, 2018
    Inventors: Thomas Paul Selby, Nicholas Ryan Deprez, Thomas Martin Stevenson, Andrew Edmund Taggi, John Robbins DeBergh
  • Patent number: 10108144
    Abstract: A head-mounted display device comprises a rendering engine configured to generate a hologram representative of a three-dimensional object. The hologram includes depth information that causes the three-dimensional object to be rendered with a focus that is determined by the depth information. The device also includes a spatial light modulator that modulates light from a light source as indicated by the hologram. A switchable hologram comprises multiple stacked switchable gratings. Each of the stacked switchable gratings is associated with one or more resulting exit pupil locations on a viewing surface. The system also comprises an eye tracker configured to map a viewing direction of a user's eye to a viewing location on the viewing surface. A processor is configured to activate a particular switchable grating within the switchable transmission hologram that is associated with an exit pupil location that aligns with the viewing location.
    Type: Grant
    Filed: September 16, 2016
    Date of Patent: October 23, 2018
    Assignee: Microsoft Technology Licensing, LLC
    Inventors: Steven John Robbins, Andrew Maimone, Andreas Georgiou, Joel Steven Kollin
  • Publication number: 20180301206
    Abstract: An improved healthcare service includes a patient device adapted to provide interfaces for indicating whether a procedure is inpatient, entering codes and prices for the procedure, asking questions of the patient, create a payment summary, generate a payment, editing procedure descriptions, listing pending procedures and providers that can perform procedures, and displaying prices of services of a selected provider; a doctor device adapted to provide interfaces for displaying a listing of procedures of patients of a doctor; posting the doctor's available services and schedules; editing the doctor's specialty; posting needs for facilities and specialists; viewing incoming requests for services; searching for and communicating with facilities and specialists; and a server adapted to provide databases for storing information communicated between the patient and doctor device, provider information, information regarding diagnosis related groups of procedures, and information regarding procedure pricing; and deter
    Type: Application
    Filed: December 11, 2017
    Publication date: October 18, 2018
    Inventors: John Robbins, Dan Robbins, Bill Robbins, Dave Gao
  • Patent number: 10088686
    Abstract: A MEMS laser scanner is disclosed for use in a near-eye display including an increased field of view (FOV). In embodiments, one or more polarization gratings may be applied to the mirror of the MEMS laser scanner, which polarization gratings may be configured according to the Bragg regime. Using light of different polarizations, the MEMS laser scanner is able to expand the FOV without increasing the range over which the mirror of the scanner oscillates.
    Type: Grant
    Filed: December 16, 2016
    Date of Patent: October 2, 2018
    Assignee: Microsoft Technology Licensing, LLC
    Inventors: Steven John Robbins, Eliezer Glik, Sihui He, Xinye Lou
  • Publication number: 20180267318
    Abstract: A wearable image display system includes a headpiece, a first and a second light engine, and a first and a second optical component. The first and second light engines generate a first and a second set of beams respectively, each beam substantially collimated so that the first and second set form a first and a second virtual image respectively. Each optical component is located to project an image onto a first and a second eye of a wearer respectively. The first and second sets of beams are directed to incoupling structures of the first and second optical components respectively. Exit structures of the first and second optical components guide the first and second sets of beams onto the first and second eyes respectively. The optical components are located between the light engines and the eyes. Both of the light engines are mounted to a central portion of the headpiece.
    Type: Application
    Filed: May 23, 2018
    Publication date: September 20, 2018
    Applicant: Microsoft Technology Licensing, LLC
    Inventors: Tapani Levola, Pasi Saarikko, Steven John Robbins, Yarn Chee Poon, Lena Adele Wolfe, Erica Lee Towle
  • Patent number: 10018844
    Abstract: A wearable image display system includes a headpiece, a first and a second light engine, and a first and a second optical component. The first and second light engines generate a first and a second set of beams respectively, each beam substantially collimated so that the first and second set form a first and a second virtual image respectively. Each optical component is located to project an image onto a first and a second eye of a wearer respectively. The first and second sets of beams are directed to incoupling structures of the first and second optical components respectively. Exit structures of the first and second optical components guide the first and second sets of beams onto the first and second eyes respectively. The optical components are located between the light engines and the eyes. Both of the light engines are mounted to a central portion of the headpiece.
    Type: Grant
    Filed: February 9, 2015
    Date of Patent: July 10, 2018
    Assignee: Microsoft Technology Licensing, LLC
    Inventors: Tapani Levola, Pasi Saarikko, Steven John Robbins, Yarn Chee Poon, Lena Adele Wolfe, Erica Lee Towle
  • Publication number: 20180172994
    Abstract: A MEMS laser scanner is disclosed for use in a near-eye display including an increased field of view (FOV). In embodiments, one or more polarization gratings may be applied to the mirror of the MEMS laser scanner, which polarization gratings may be configured according to the Bragg regime. Using light of different polarizations, the MEMS laser scanner is able to expand the FOV without increasing the range over which the mirror of the scanner oscillates.
    Type: Application
    Filed: December 16, 2016
    Publication date: June 21, 2018
    Inventors: Steven John Robbins, Eliezer Glik, Sihui He, Xinye Lou
  • Patent number: 9971150
    Abstract: A near-eye optical display system utilizes a compact display engine that couples image light from an imager to a waveguide-based display having diffractive optical elements (DOEs) that provide exit pupil expansion in two directions. The display engine comprises a pair of single axis MEMS (Micro Electro Mechanical System) scanners that are configured to reflect the image light through horizontal and vertical scan axes of the display system's field of view (FOV) using raster scanning. The MEMS scanners are arranged with their axes of rotation at substantially right angles to each other and operate with respective quarter wave retarder plates and a polarizing beam splitter (PBS) to couple the image light into an in-coupling DOE in the waveguide display without the need for additional optical elements such as lenses or relay systems.
    Type: Grant
    Filed: April 28, 2017
    Date of Patent: May 15, 2018
    Assignee: MICROSOFT TECHNOLOGY LICENSING, LLC
    Inventor: Steven John Robbins
  • Publication number: 20180129048
    Abstract: In implementations of hologram focus accommodation, a focus accommodation system is implemented for variable focus of a generated image, such as a hologram, that is displayed for viewing on a waveguide display. The focus accommodation system includes switchable polarization retarders that rotate a polarization of light of the generated image, where the light passes through the switchable polarization retarders along an imaging path in which the generated image is viewable. The focus accommodation system also includes polarization sensitive gratings alternatingly interspersed with the switchable polarization retarders. Each of the polarization sensitive gratings are configurable to diffract the light in a first polarization state and transmit the light in a second polarization state. The variable focus is adjustable to a focal distance at which a user perceives viewing the generated image as displayed by the waveguide display.
    Type: Application
    Filed: April 6, 2017
    Publication date: May 10, 2018
    Applicant: Microsoft Technology Licensing, LLC
    Inventors: Steven John Robbins, Xinye Lou, Eliezer M. Glik
  • Publication number: 20180120563
    Abstract: Examples are disclosed that relate to a near-eye display device including a holographic display system. The holographic display system includes a light source configured to emit light that is converging or diverging, a waveguide configured to be positioned in a field of view of a user's eye, and a digital dynamic hologram configured to receive the light, and project the light into the waveguide such that the light propagates through the waveguide.
    Type: Application
    Filed: June 15, 2017
    Publication date: May 3, 2018
    Applicant: Microsoft Technology Licensing, LLC
    Inventors: Joel Steven KOLLIN, Andrew MAIMONE, Steven John ROBBINS, Eliezer GLIK, Andreas GEORGIOU, Xinye LOU
  • Patent number: 9958684
    Abstract: A near-eye optical display system utilizes a compact display engine that couples image light from an imager to a waveguide-based display having diffractive optical elements (DOEs) that provide exit pupil expansion in two directions. The display engine comprises a pair of single axis MEMS (Micro Electro Mechanical System) scanners that are configured to reflect the image light through horizontal and vertical scan axes of the display system's field of view (FOV) using raster scanning. The MEMS scanners are arranged with their axes of rotation at substantially right angles to each other and operate with respective quarter wave retarder plates and a polarizing beam splitter (PBS) to couple the image light into an in-coupling DOE in the waveguide display without the need for additional optical elements such as lenses or relay systems.
    Type: Grant
    Filed: April 28, 2017
    Date of Patent: May 1, 2018
    Assignee: MICROSOFT TECHNOLOGY LICENSING, LLC
    Inventor: Steven John Robbins
  • Publication number: 20180113309
    Abstract: An input-coupler of an optical waveguide includes one or more Bragg polarization gratings for coupling light corresponding to the image in two different directions into the optical waveguide. The input-coupler splits the FOV of the image coupled into the optical waveguide into first and second portions by diffracting a portion of the light corresponding to the image in a first direction toward a first intermediate component, and diffracting a portion of the light corresponding to the image in a second direction toward a second intermediate component. An output-coupler of the waveguide combines the light corresponding to the first and second portions of the FOV, and couples the light corresponding to the combined first and second portions of the FOV out of the optical waveguide so that the light corresponding to the image and the combined first and second portions of the FOV is output from the optical waveguide.
    Type: Application
    Filed: February 22, 2017
    Publication date: April 26, 2018
    Inventors: Steven John Robbins, Joshua Owen Miller, Richard Andrew Wall, Eliezer Glik, Jani Kari Tapio Tervo, Bernard Kress, Xinye Lou
  • Publication number: 20180105501
    Abstract: Disclosed are compounds of Formula 1, including all stereoisomers, N-oxides, and salts thereof, wherein A, Z, R1 R2, R3 and m are as defined in the disclosure. Also disclosed are compositions containing the compounds of Formula 1 and methods for controlling undesired vegetation comprising contacting the undesired vegetation or its environment with an effective amount of a compound or a composition of the invention.
    Type: Application
    Filed: June 1, 2016
    Publication date: April 19, 2018
    Inventors: Nicholas Ryan Deprez, Paula Louise Sharpe, Ravisekhara Pochimireddy Reddy, John Robbins Debergh
  • Publication number: 20180081322
    Abstract: A head-mounted display device comprises a rendering engine configured to generate a hologram representative of a three-dimensional object. The hologram includes depth information that causes the three-dimensional object to be rendered with a focus that is determined by the depth information. The device also includes a spatial light modulator that modulates light from a light source as indicated by the hologram. A switchable hologram comprises multiple stacked switchable gratings. Each of the stacked switchable gratings is associated with one or more resulting exit pupil locations on a viewing surface. The system also comprises an eye tracker configured to map a viewing direction of a user's eye to a viewing location on the viewing surface. A processor is configured to activate a particular switchable grating within the switchable transmission hologram that is associated with an exit pupil location that aligns with the viewing location.
    Type: Application
    Filed: September 16, 2016
    Publication date: March 22, 2018
    Inventors: Steven John Robbins, Andrew Maimone, Andreas Georgiou, Joel Steven Kollin
  • Publication number: 20180074317
    Abstract: A display system includes a display alignment tracker configured track the position of a first signal and the position of a second signal. The display alignment tracker optically multiplexes a portion of a first signal and a portion of the second signal into a combined optical signal and measures a differential between the first signal and the second signal.
    Type: Application
    Filed: September 12, 2016
    Publication date: March 15, 2018
    Inventors: Steven John Robbins, Drew Edward Steedly, Michael Edward Samples, Zhiqiang Liu, Andrew K. Juenger
  • Publication number: 20180074578
    Abstract: A display system includes a display alignment tracker configured track the position of a first signal in a first waveguide and the position of a second signal in a second waveguide. The display alignment tracker optically multiplexes a portion of a first signal and a portion of the second signal into a combined optical signal and measures a differential between the first signal and the second signal. The differential is used to adjust the position, dimensions, or a color attribute of the first signal relative to the second signal.
    Type: Application
    Filed: September 12, 2016
    Publication date: March 15, 2018
    Inventors: Steven John Robbins, Drew Edward Steedly, Michael Edward Samples, Zhiqiang Liu, Andrew K. Juenger
  • Patent number: 9915825
    Abstract: An apparatus for use in replicating an image associated with an input-pupil to an output-pupil includes a planar optical waveguide including a bulk-substrate, and also including an input-coupler, an intermediate-component and an output-coupler. The input-coupler couples light corresponding to the image into the bulk-substrate and towards the intermediate-component. The intermediate-component performs horizontal or vertical pupil expansion and directs the light corresponding to the image towards the output-coupler. The output-coupler performs the other one of horizontal or vertical pupil expansion and couples light corresponding to the image, which travels from the input-coupler to the output-coupler, out of the waveguide. The apparatus further includes a volume layer, embedded between first and second major planar surfaces of the bulk-substrate, configured to cause light that is output by the output-coupler to have a more uniform intensity distribution compared to if the volume layer were absent.
    Type: Grant
    Filed: November 10, 2015
    Date of Patent: March 13, 2018
    Assignee: Microsoft Technology Licensing, LLC
    Inventors: Steven John Robbins, Scott Woltman, R. Andrew Wall, Yarn Chee Poon
  • Publication number: 20170326446
    Abstract: Augmented reality and physical game techniques are described. In one or more implementations, an indication is received by a computing device of a location of a physical gaming piece of a game. An augmentation is computed based on the indication by the computing device to be displayed as part of the game. The augmentation is displayed by the computing device on a display device that is at least partially transparent such that a physical portion of the game is viewable through the display device concurrently with the augmentation.
    Type: Application
    Filed: July 31, 2017
    Publication date: November 16, 2017
    Applicant: Microsoft Technology Licensing, LLC
    Inventors: Steven John Robbins, William J. Westerinen, Lisa M. Hanson, Sung Ho Son, Richard J. Wattles
  • Patent number: 9791696
    Abstract: An apparatus for use in replicating an image associated with an input-pupil to an output-pupil includes a planar optical waveguide including a bulk-substrate, and also including an input-coupler, an intermediate-component and an output-coupler. The input-coupler couples light corresponding to the image into the bulk-substrate and towards the intermediate-component. The intermediate-component performs horizontal or vertical pupil expansion and directs the light corresponding to the image towards the output-coupler. The output-coupler performs the other one of horizontal or vertical pupil expansion and couples light corresponding to the image, which travels from the input-coupler to the output-coupler, out of the waveguide.
    Type: Grant
    Filed: November 10, 2015
    Date of Patent: October 17, 2017
    Assignee: MICROSOFT TECHNOLOGY LICENSING, LLC
    Inventors: Scott Woltman, Steven John Robbins, R. Andrew Wall, Tuomas Vallius, Tapani Levola, Pasi Kostamo
  • Patent number: 9726891
    Abstract: A display engine assembly comprises a first imager and a second imager to generate a left image and a right image, respectively, in a head-mounted display device. The left and right images are left and right components, respectively, of a single stereoscopic image. The display engine further comprises an optical waveguide optically coupled to the first imager and the second imager. The optical waveguide is part of a first optical path to convey the left image to a left eye of a user of the head-mounted display device and is also part of a second optical path to convey the right image to a right eye of the user of the head-mounted display device.
    Type: Grant
    Filed: September 3, 2015
    Date of Patent: August 8, 2017
    Assignee: Microsoft Technology Licensing, LLC
    Inventors: James Randolph Webster, Jeb Wu, Richard James, Steven John Robbins, Yarn Chee Poon, KengHui Lin, Chienchih Hsiung