Patents by Inventor John A. Rogers

John A. Rogers has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9765934
    Abstract: Provided herein are electronic devices including arrays of printable light emitting diodes (LEDs) having device geometries and dimensions providing enhanced thermal management and control relative to conventional LED-based lighting systems. The systems and methods described provide large area, transparent, and/or flexible LED arrays useful for a range of applications in microelectronics, including display and lightning technology. Methods are also provided for assembling and using electronic devices including thermally managed arrays of printable light emitting diodes (LEDs).
    Type: Grant
    Filed: May 15, 2012
    Date of Patent: September 19, 2017
    Assignees: THE BOARD OF TRUSTEES OF THE UNIVERSITY OF ILLINOIS, NORTHWESTERN UNIVERSITY
    Inventors: John A. Rogers, Hoon-Sik Kim, Yonggang Huang
  • Patent number: 9768086
    Abstract: The invention provides methods and devices for fabricating printable semiconductor elements and assembling printable semiconductor elements onto substrate surfaces. Methods, devices and device components of the present invention are capable of generating a wide range of flexible electronic and optoelectronic devices and arrays of devices on substrates comprising polymeric materials. The present invention also provides stretchable semiconductor structures and stretchable electronic devices capable of good performance in stretched configurations.
    Type: Grant
    Filed: March 29, 2016
    Date of Patent: September 19, 2017
    Assignee: THE BOARD OF TRUSTEES OF THE UNIVERSITY OF ILLINOIS
    Inventors: Ralph G. Nuzzo, John A. Rogers, Etienne Menard, Keon Jae Lee, Dahl-Young Khang, Yugang Sun, Matthew Meitl, Zhengtao Zhu
  • Patent number: 9758286
    Abstract: A detergent product including a flexible box bag and soluble unit dose detergent pouch.
    Type: Grant
    Filed: October 6, 2016
    Date of Patent: September 12, 2017
    Assignee: The Procter & Gamble Company
    Inventors: Dominique Celine Ignace Marie Geeraert, Mostafa Elmihy, Neil John Rogers
  • Patent number: 9761444
    Abstract: The invention provides methods and devices for fabricating printable semiconductor elements and assembling printable semiconductor elements onto substrate surfaces. Methods, devices and device components of the present invention are capable of generating a wide range of flexible electronic and optoelectronic devices and arrays of devices on substrates comprising polymeric materials. The present invention also provides stretchable semiconductor structures and stretchable electronic devices capable of good performance in stretched configurations.
    Type: Grant
    Filed: March 29, 2016
    Date of Patent: September 12, 2017
    Assignee: THE BOARD OF TRUSTEES OF THE UNIVERSITY OF ILLINOIS
    Inventors: Ralph G. Nuzzo, John A. Rogers, Etienne Menard, Keon Jae Lee, Dahl-Young Khang, Yugang Sun, Matthew Meitl, Zhengtao Zhu
  • Publication number: 20170231571
    Abstract: Skin-mounted or epidermal devices and methods for monitoring biofluids are disclosed. The devices comprise a functional substrate that is mechanically and/or thermally matched to skin to provide durable adhesion for long-term wear. The functional substrates allow for the microfluidic transport of biofluids from the skin to one or more sensors that measure and/or detect biological parameters, such as rate of biofluid production, biofluid volume, and biomarker concentration. Sensors within the devices may be mechanical, electrical or chemical, with colorimetric indicators being observable by the naked eye or with a portable electronic device (e.g., a smartphone). By monitoring changes in an individual's health state over time, the disclosed devices may provide early indications of abnormal conditions.
    Type: Application
    Filed: August 11, 2015
    Publication date: August 17, 2017
    Inventors: John A. ROGERS, Ahyeon KOH, Daeshik KANG, YuHao LIU, Xian HUANG
  • Patent number: 9734922
    Abstract: Illustrative embodiments provide modular nuclear fission deflagration wave reactors and methods for their operation. Illustrative embodiments and aspects include, without limitation, modular nuclear fission deflagration wave reactors, modular nuclear fission deflagration wave reactor modules, methods of operating a modular nuclear fission deflagration wave reactor, and the like.
    Type: Grant
    Filed: May 12, 2008
    Date of Patent: August 15, 2017
    Assignee: TerraPower, LLC
    Inventors: Charles E. Ahlfeld, John Rogers Gilleland, Roderick A. Hyde, Muriel Y. Ishikawa, David G. McAlees, Nathan P. Myhrvold, Charles Whitmer, Lowell L. Wood, Jr., Ashok Odedra
  • Publication number: 20170224257
    Abstract: The invention provides systems and methods for tissue-mounted photonics. Devices of some embodiments implement photonic sensing and actuation in flexible and/stretchable device architectures compatible with achieving long term, mechanically robust conformal integration with a range of tissue classes, including in vivo biometric sensing for internal and external tissues. Tissue-mounted photonic systems of some embodiments include colorimetric, fluorometric and/or spectroscopic photonics sensors provided in pixelated array formats on soft, elastomeric substrates to achieve spatially and/or or temporally resolved sensing of tissue and/or environmental properties, while minimize adverse physical effects to the tissue. Tissue-mounted photonic systems of some embodiments enable flexible passive or active optical sensing modalities, including sensing compatible with optical readout using a mobile electronic devices such as a mobile phone or tablet computer.
    Type: Application
    Filed: August 11, 2015
    Publication date: August 10, 2017
    Inventor: John A. ROGERS
  • Patent number: 9721679
    Abstract: A nuclear fission reactor fuel assembly adapted to permit expansion of the nuclear fuel contained therein. The fuel assembly comprises an enclosure having enclosure walls to sealingly enclose a nuclear fuel foam defining a plurality of interconnected open-cell voids or a plurality of closed-cell voids. The voids permit expansion of the foam toward the voids, which expansion may be due to heat generation and/or fission gas release. The voids shrink or reduce in volume as the foam expands. Pressure on the enclosure walls is substantially reduced because the foam expands toward and even into the voids rather than against the enclosure walls. Thus, the voids provide space into which the foam can expand.
    Type: Grant
    Filed: April 8, 2008
    Date of Patent: August 1, 2017
    Assignee: TerraPower, LLC
    Inventors: Charles E. Ahlfeld, John Rogers Gilleland, Roderick A. Hyde, Muriel Y. Ishikawa, David G. McAlees, Nathan P. Myhrvold, Clarence T. Tegreene, Thomas Allan Weaver, Charles Whitmer, Lowell L. Wood, Jr.
  • Publication number: 20170210117
    Abstract: A transfer printing process that exploits the mismatch in mechanical or thermo-mechanical response at the interface of a printable micro- or nano-device and a transfer stamp to drive the release of the device from the stamp and its non-contact transfer to a receiving substrate are provided. The resulting facile, pick-and-place process is demonstrated with the assembling of 3-D microdevices and the printing of GAN light-emitting diodes onto silicon and glass substrates. High speed photography is used to provide experimental evidence of thermo-mechanically driven release.
    Type: Application
    Filed: December 9, 2016
    Publication date: July 27, 2017
    Inventors: John A. ROGERS, Placid M. FERREIRA, Reza SAEIDPOURAZAR
  • Publication number: 20170200707
    Abstract: Described herein are printable structures and methods for making, assembling and arranging electronic devices. A number of the methods described herein are useful for assembling electronic devices where one or more device components are embedded in a polymer which is patterned during the embedding process with trenches for electrical interconnects between device components. Some methods described herein are useful for assembling electronic devices by printing methods, such as by dry transfer contact printing methods. Also described herein are GaN light emitting diodes and methods for making and arranging GaN light emitting diodes, for example for display or lighting systems.
    Type: Application
    Filed: March 27, 2017
    Publication date: July 13, 2017
    Applicant: The Board of Trustees of the University of Illinois
    Inventors: John A. ROGERS, Ralph NUZZO, Hoon-sik KIM, Eric BRUECKNER, Sang Il PARK, Rak Hwan KIM
  • Publication number: 20170200679
    Abstract: The present invention provides stretchable, and optionally printable, semiconductors and electronic circuits capable of providing good performance when stretched, compressed, flexed or otherwise deformed. Stretchable semiconductors and electronic circuits of the present invention preferred for some applications are flexible, in addition to being stretchable, and thus are capable of significant elongation, flexing, bending or other deformation along one or more axes. Further, stretchable semiconductors and electronic circuits of the present invention may be adapted to a wide range of device configurations to provide fully flexible electronic and optoelectronic devices.
    Type: Application
    Filed: October 31, 2016
    Publication date: July 13, 2017
    Inventors: John A. ROGERS, Dahl-Young KHANG, Yugang SUN, Etienne MENARD
  • Patent number: 9704604
    Abstract: A nuclear fission reactor fuel assembly and system configured for controlled removal of a volatile fission product and heat released by a burn wave in a traveling wave nuclear fission reactor and method for same. The fuel assembly comprises an enclosure adapted to enclose a porous nuclear fuel body having the volatile fission product therein. A fluid control subassembly is coupled to the enclosure and adapted to control removal of at least a portion of the volatile fission product from the porous nuclear fuel body. In addition, the fluid control subassembly is capable of circulating a heat removal fluid through the porous nuclear fuel body in order to remove heat generated by the nuclear fuel body.
    Type: Grant
    Filed: July 7, 2009
    Date of Patent: July 11, 2017
    Assignee: TerraPower, LLC
    Inventors: Charles E. Ahlfeld, John Rogers Gilleland, Roderick A. Hyde, Muriel Y. Ishikawa, David G. McAlees, Nathan P. Myhrvold, Clarence T. Tegreene, Thomas Allan Weaver, Charles Whitmer, Victoria Y. H. Wood, Lowell L. Wood, Jr., George B. Zimmerman
  • Publication number: 20170181704
    Abstract: Disclosed are appendage mountable electronic systems and related methods for covering and conforming to an appendage surface. A flexible or stretchable substrate has an inner surface for receiving an appendage, including an appendage having a curved surface, and an opposed outer surface that is accessible to external surfaces. A stretchable or flexible electronic device is supported by the substrate inner and/or outer surface, depending on the application of interest. The electronic device in combination with the substrate provides a net bending stiffness to facilitate conformal contact between the inner surface and a surface of the appendage provided within the enclosure. In an aspect, the system is capable of surface flipping without adversely impacting electronic device functionality, such as electronic devices comprising arrays of sensors, actuators, or both sensors and actuators.
    Type: Application
    Filed: December 12, 2016
    Publication date: June 29, 2017
    Inventors: John A. ROGERS, Ming YING, Andrew BONIFAS, Nanshu LU
  • Patent number: 9691873
    Abstract: The invention provides transient devices, including active and passive devices that electrically and/or physically transform upon application of at least one internal and/or external stimulus. Materials, modeling tools, manufacturing approaches, device designs and system level examples of transient electronics are provided.
    Type: Grant
    Filed: September 21, 2012
    Date of Patent: June 27, 2017
    Assignees: The Board of Trustees of the University of Illinois, Trustees of Tufts College
    Inventors: John A. Rogers, Fiorenzo G. Omenetto, Suk-Won Hwang, Hu Tao, Dae-Hyeong Kim, David Kaplan
  • Publication number: 20170179100
    Abstract: Provided are optical devices and systems fabricated, at least in part, via printing-based assembly and integration of device components. In specific embodiments the present invention provides light emitting systems, light collecting systems, light sensing systems and photovoltaic systems comprising printable semiconductor elements, including large area, high performance macroelectronic devices. Optical systems of the present invention comprise semiconductor elements assembled, organized and/or integrated with other device components via printing techniques that exhibit performance characteristics and functionality comparable to single crystalline semiconductor based devices fabricated using conventional high temperature processing methods. Optical systems of the present invention have device geometries and configurations, such as form factors, component densities, and component positions, accessed by printing that provide a range of useful device functionalities.
    Type: Application
    Filed: January 10, 2017
    Publication date: June 22, 2017
    Inventors: John ROGERS, Ralph NUZZO, Matthew MEITL, Etienne MENARD, Alfred BACA, Michael MOTALA, Jong-Hyun AHN, Sang-Il PARK, Chang-Jae YU, Heung Cho KO, Mark STOYKOVICH, Jongseung YOON
  • Publication number: 20170179356
    Abstract: Provided are optical devices and systems fabricated, at least in part, via printing-based assembly and integration of device components. In specific embodiments the present invention provides light emitting systems, light collecting systems, light sensing systems and photovoltaic systems comprising printable semiconductor elements, including large area, high performance macroelectronic devices. Optical systems of the present invention comprise semiconductor elements assembled, organized and/or integrated with other device components via printing techniques that exhibit performance characteristics and functionality comparable to single crystalline semiconductor based devices fabricated using conventional high temperature processing methods. Optical systems of the present invention have device geometries and configurations, such as form factors, component densities, and component positions, accessed by printing that provide a range of useful device functionalities.
    Type: Application
    Filed: January 10, 2017
    Publication date: June 22, 2017
    Inventors: John ROGERS, Ralph NUZZO, Matthew MEITL, Etienne MENARD, Alfred BACA, Michael MOTALA, Jong-Hyun AHN, Sang-Il PARK, Chang-Jae YU, Heung Cho KO, Mark STOYKOVICH, Jongseung YOON
  • Publication number: 20170179085
    Abstract: Provided are optical devices and systems fabricated, at least in part, via printing-based assembly and integration of device components. In specific embodiments the present invention provides light emitting systems, light collecting systems, light sensing systems and photovoltaic systems comprising printable semiconductor elements, including large area, high performance macroelectronic devices. Optical systems of the present invention comprise semiconductor elements assembled, organized and/or integrated with other device components via printing techniques that exhibit performance characteristics and functionality comparable to single crystalline semiconductor based devices fabricated using conventional high temperature processing methods. Optical systems of the present invention have device geometries and configurations, such as form factors, component densities, and component positions, accessed by printing that provide a range of useful device functionalities.
    Type: Application
    Filed: January 10, 2017
    Publication date: June 22, 2017
    Inventors: John ROGERS, Ralph NUZZO, Matthew MEITL, Etienne MENARD, Alfred BACA, Michael MOTALA, Jong-Hyun AHN, Sang-Il PARK, Chang-Jae YU, Heung Cho KO, Mark STOYKOVICH, Jongseung YOON
  • Patent number: 9677476
    Abstract: Presented herein are turbine machines, turbine control systems, methods, and computer-readable storage devices for controlling turbines including a compressor, a combustion system, and a turbine section comprising a turbine operating at an initial turbine output while using initial parameter values for the respective control parameters of the turbine. The techniques involve, for respective selected control parameters, selecting an adjustment of the initial parameter value of the selected control parameter, and predicting a predicted turbine output of the turbine operated using the adjustment of the selected control parameter and the initial parameter values for other control parameters; comparing the predicted turbine outputs for the adjustments of the respective control parameters to select, from the control parameters, a target control parameter having a target adjustment that results in the target turbine output; and operating the turbine with the target adjustment of the target control parameter.
    Type: Grant
    Filed: February 26, 2014
    Date of Patent: June 13, 2017
    Assignee: General Electric Company
    Inventors: Jonathan York Smith, John Rogers Huey, Prabhanjana Kalya
  • Patent number: 9677147
    Abstract: Illustrative methods are provided for annealing nuclear fission reactor materials, such as without limitation, a nuclear fission reactor core or fuel assembly or components thereof within the nuclear core. Annealing a metallic component of a nuclear fission reactor within the reactor core may include determining an annealing temperature for at least a portion of at least one metallic component of a nuclear fission fuel assembly of the reactor. The temperature of the core may be adjusted to affect the determined annealing temperature, which in some cases may be greater than the predetermined operating temperature range of the nuclear fission fuel assembly. The portion of the at least one metallic component of the nuclear fission fuel assembly is annealed within the core at the annealing temperature range.
    Type: Grant
    Filed: June 13, 2013
    Date of Patent: June 13, 2017
    Assignee: TerraPower, LLC
    Inventors: Charles E. Ahlfeld, John Rogers Gilleland, Roderick A. Hyde, David G. McAlees, Jon David McWhirter, Ashok Odedra, Clarence T. Tegreene, Joshua C. Walter, Kevan D. Weaver, Charles Whitmer, Lowell L. Wood, Jr., George B. Zimmerman
  • Publication number: 20170164482
    Abstract: The invention provides transient devices, including active and passive devices that physically, chemically and/or electrically transform upon application of at least one internal and/or external stimulus. Incorporation of degradable device components, degradable substrates and/or degradable encapsulating materials each having a programmable, controllable and/or selectable degradation rate provides a means of transforming the device. In some embodiments, for example, transient devices of the invention combine degradable high performance single crystalline inorganic materials with selectively removable substrates and/or encapsulants.
    Type: Application
    Filed: November 14, 2016
    Publication date: June 8, 2017
    Applicant: The Board of Trustees of the University of Illinois
    Inventors: John A. ROGERS, Seung-Kyun KANG, SukWon HWANG, Jianjun CHENG, Yanfeng ZHANG, Hanze YING