Patents by Inventor John A. Standley

John A. Standley has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11434940
    Abstract: A rotary actuator, including a manifold block and a rotor assembly that includes a rotor shaft and a plurality of arcuate pistons attached to the rotor shaft, each arcuate piston curving at a set radial distance from the rotor shaft, and each piston attached to the rotor shaft via a crank arm. A pressure chamber assembly coupled to the manifold block defines a plurality of piston pressure chambers that receive and at least partially enclose each arcuate piston, including a plurality of gland seals disposed adjacent the entrance of each piston pressure chamber to create a seal between the inner surface of the pressure chamber and the outer surface of the arcuate piston. Each gland seal includes an inner seal that engages the piston surface of the arcuate piston, and plural outer seals that engage the inner surface of the piston pressure chamber, forming a hydraulic seal.
    Type: Grant
    Filed: February 24, 2020
    Date of Patent: September 6, 2022
    Assignee: The Boeing Company
    Inventors: John A. Standley, Kim R. Lisenko, Timothy Paul Zazynski
  • Publication number: 20210262495
    Abstract: A rotary actuator, including a manifold block and a rotor assembly that includes a rotor shaft and a plurality of arcuate pistons attached to the rotor shaft, each arcuate piston curving at a set radial distance from the rotor shaft, and each piston attached to the rotor shaft via a crank arm. A pressure chamber assembly coupled to the manifold block defines a plurality of piston pressure chambers that receive and at least partially enclose each arcuate piston, including a plurality of gland seals disposed adjacent the entrance of each piston pressure chamber to create a seal between the inner surface of the pressure chamber and the outer surface of the arcuate piston. Each gland seal includes an inner seal that engages the piston surface of the arcuate piston, and plural outer seals that engage the inner surface of the piston pressure chamber, forming a hydraulic seal.
    Type: Application
    Filed: February 24, 2020
    Publication date: August 26, 2021
    Applicant: The Boeing Company
    Inventors: John A. Standley, Kim R. Lisenko, Timothy Paul Zazynski
  • Patent number: 10689092
    Abstract: Methods and apparatus for reacting rotary actuator and control surface loads into a wing structure using reaction links. The apparatus incorporates a structural interface feature that can facilitate a change of the component(s) in the load loop, such as the path connecting a control surface to a fixed aircraft structure via a rotary actuator. In particular, the structural interface between the rotary actuator and the rear spar of a wing can be tuned for stiffness to achieve an optimized load path that reacts actuator and control surface loads back into the wing structure. An actuator integration objective can be met for any rotary actuator using an integration method which tolerates wing and/or hinge line deflection.
    Type: Grant
    Filed: March 28, 2018
    Date of Patent: June 23, 2020
    Assignee: The Boeing Company
    Inventors: Neal Van Huynh, John A. Standley
  • Patent number: 10246178
    Abstract: An apparatus for controlling the pitch of an aircraft. The apparatus includes a horizontal control column extending from a control wheel horizontally towards a front wall of a cockpit. A pitch output link is connected to a downstream pitch control mechanism to transfer a force applied at the pitch output link to the downstream pitch control mechanism. A transfer assembly is connected to the horizontal control column and to the pitch output link. The transfer assembly translates a horizontal force applied to the horizontal control column to the pitch output link to provide the force applied to the downstream pitch control mechanism.
    Type: Grant
    Filed: July 7, 2016
    Date of Patent: April 2, 2019
    Assignee: The Boeing Company
    Inventors: Joseph E. Elliott, Andrew Sones, John Standley
  • Publication number: 20180222572
    Abstract: Methods and apparatus for reacting rotary actuator and control surface loads into a wing structure using reaction links. The apparatus incorporates a structural interface feature that can facilitate a change of the component(s) in the load loop, such as the path connecting a control surface to a fixed aircraft structure via a rotary actuator. In particular, the structural interface between the rotary actuator and the rear spar of a wing can be tuned for stiffness to achieve an optimized load path that reacts actuator and control surface loads back into the wing structure. An actuator integration objective can be met for any rotary actuator using an integration method which tolerates wing and/or hinge line deflection.
    Type: Application
    Filed: March 28, 2018
    Publication date: August 9, 2018
    Applicant: The Boeing Company
    Inventors: Neal Van Huynh, John A. Standley
  • Patent number: 9957831
    Abstract: Systems, methods, and devices are configured to implement hydraulic actuators. Devices may include a housing having an internal surface defining an internal cavity that may have a substantially circular cross sectional curvature. The devices may include a rotor that includes a first slot having a substantially circular curvature. The devices may include a first vane disk partially disposed within the first slot of the rotor, where the first vane disk has a substantially circular external geometry. The first vane disk may be mechanically coupled to the rotor via the first slot, and the first vane disk may be configured to form a first seal with the internal surface of the housing. The devices may include a first separator device that may be configured to form a second seal with the internal surface of the housing and a third seal with an external surface of the rotor.
    Type: Grant
    Filed: July 31, 2014
    Date of Patent: May 1, 2018
    Assignee: The Boeing Company
    Inventors: Charuhas M. Soman, Steven P. Walker, Michael K. Klein, John A. Standley
  • Patent number: 9950782
    Abstract: Methods and apparatus for reacting rotary actuator and control surface loads into a wing structure using reaction links. The apparatus incorporates a structural interface feature that can facilitate a change of the component(s) in the load loop, such as the path connecting a control surface to a fixed aircraft structure via a rotary actuator. In particular, the structural interface between the rotary actuator and the rear spar of a wing can be tuned for stiffness to achieve an optimized load path that reacts actuator and control surface loads back into the wing structure. An actuator integration objective can be met for any rotary actuator using an integration method which tolerates wing and/or hinge line deflection.
    Type: Grant
    Filed: October 31, 2014
    Date of Patent: April 24, 2018
    Assignee: The Boeing Company
    Inventors: Neal Van Huynh, John A. Standley
  • Publication number: 20180009523
    Abstract: An apparatus for controlling the pitch of an aircraft. The apparatus includes a horizontal control column extending from a control wheel horizontally towards a front wall of a cockpit. A pitch output link is connected to a downstream pitch control mechanism to transfer a force applied at the pitch output link to the downstream pitch control mechanism. A transfer assembly is connected to the horizontal control column and to the pitch output link. The transfer assembly translates a horizontal force applied to the horizontal control column to the pitch output link to provide the force applied to the downstream pitch control mechanism.
    Type: Application
    Filed: July 7, 2016
    Publication date: January 11, 2018
    Inventors: JOSEPH E. ELLIOTT, ANDREW SONES, JOHN STANDLEY
  • Publication number: 20160229524
    Abstract: Methods and apparatus for reacting rotary actuator and control surface loads into a wing structure using reaction links. The apparatus incorporates a structural interface feature that can facilitate a change of the component(s) in the load loop, such as the path connecting a control surface to a fixed aircraft structure via a rotary actuator. In particular, the structural interface between the rotary actuator and the rear spar of a wing can be tuned for stiffness to achieve an optimized load path that reacts actuator and control surface loads back into the wing structure. An actuator integration objective can be met for any rotary actuator using an integration method which tolerates wing and/or hinge line deflection.
    Type: Application
    Filed: October 31, 2014
    Publication date: August 11, 2016
    Applicant: THE BOEING COMPANY
    Inventors: Neal Van Huynh, John A. Standley
  • Publication number: 20160032758
    Abstract: Systems, methods, and devices are disclosed for implementing hydraulic actuators. Devices may include a housing having an internal surface defining an internal cavity that may have a substantially circular cross sectional curvature. The devices may include a rotor that includes a first slot having a substantially circular curvature. The devices may include a first vane disk partially disposed within the first slot of the rotor, where the first vane disk has a substantially circular external geometry. The first vane disk may be mechanically coupled to the rotor via the first slot, and the first vane disk may be configured to form a first seal with the internal surface of the housing. The devices may include a first separator device that may be configured to form a second seal with the internal surface of the housing and a third seal with an external surface of the rotor.
    Type: Application
    Filed: July 31, 2014
    Publication date: February 4, 2016
    Applicant: The Boeing Company
    Inventors: Charuhas M. Soman, Steven P. Walker, Michael K. Klein, John A. Standley
  • Patent number: 7891611
    Abstract: Systems and methods for controlling aircraft flaps and spoilers are disclosed. Systems in accordance with some embodiments include a wing having a trailing edge, and a flap positioned at least partially aft of the wing trailing edge and being deployable relative to the wing between a first flap position and a second flap position by operation of a first actuator. A spoiler can be positioned at least proximate to the trailing edge and can be movable among at least three positions, including a first spoiler position in which the spoiler forms a generally continuous contour with an upper surface of the wing, a second spoiler position deflected downwardly from the first, and a third spoiler position deflected upwardly from the first. A second actuator can be operatively coupled to the spoiler to move the spoiler among the first, second and third spoiler positions in a manner that is mechanically independent of the motion of the flap.
    Type: Grant
    Filed: December 28, 2007
    Date of Patent: February 22, 2011
    Assignee: The Boeing Company
    Inventors: Neal V. Huynh, Robert J. Bleeg, Ralph Scott Pepper, John A. Standley, Brian L. Bocksch
  • Publication number: 20100286849
    Abstract: Systems and methods for controlling aircraft flaps and spoilers are disclosed. Systems in accordance with some embodiments include a wing having a trailing edge, and a flap positioned at least partially aft of the wing trailing edge and being deployable relative to the wing between a first flap position and a second flap position by operation of a first actuator. A spoiler can be positioned at least proximate to the trailing edge and can be movable among at least three positions, including a first spoiler position in which the spoiler forms a generally continuous contour with an upper surface of the wing, a second spoiler position deflected downwardly from the first, and a third spoiler position deflected upwardly from the first. A second actuator can be operatively coupled to the spoiler to move the spoiler among the first, second and third spoiler positions in a manner that is mechanically independent of the motion of the flap.
    Type: Application
    Filed: December 28, 2007
    Publication date: November 11, 2010
    Applicant: The Boeing Company
    Inventors: Neal V. Huynh, Robert J. Bleeg, Ralph Scott Pepper, John A. Standley, Brian L. Bocksch
  • Patent number: 7338018
    Abstract: Systems and methods for controlling aircraft flaps and spoilers. Systems in accordance with some embodiments include a wing having a trailing edge, and a flap positioned proximate to the wing trailing edge and being deployable relative to the wing between a first flap position and a second flap position by operation of a first actuator. A spoiler can be positioned at least proximate to the trailing edge and can be movable among at least three positions, including a first spoiler position in which the spoiler forms a generally continuous contour with an upper surface of the wing, a second spoiler position deflected downwardly from the first, and a third spoiler position deflected upwardly from the first. A second actuator can be operatively coupled to the spoiler to move the spoiler among the first, second and third spoiler positions in a manner that is mechanically independent of the motion of the flap.
    Type: Grant
    Filed: February 4, 2005
    Date of Patent: March 4, 2008
    Assignee: The Boeing Company
    Inventors: Neal V. Huynh, Robert J. Bleeg, Ralph Scott Pepper, John A. Standley, Brian L. Bocksch
  • Publication number: 20060175468
    Abstract: Systems and methods for controlling aircraft flaps and spoilers are disclosed. Systems in accordance with some embodiments include a wing having a trailing edge, and a flap positioned proximate to the wing trailing edge and being deployable relative to the wing between a first flap position and a second flap position by operation of a first actuator. A spoiler can be positioned at least proximate to the trailing edge and can be movable among at least three positions, including a first spoiler position in which the spoiler forms a generally continuous contour with an upper surface of the wing, a second spoiler position deflected downwardly from the first, and a third spoiler position deflected upwardly from the first. A second actuator can be operatively coupled to the spoiler to move the spoiler among the first, second and third spoiler positions in a manner that is mechanically independent of the motion of the flap.
    Type: Application
    Filed: February 4, 2005
    Publication date: August 10, 2006
    Inventors: Neal Huynh, Robert Bleeg, Ralph Pepper, John Standley, Brian Bocksch