Patents by Inventor John A. Starkovich

John A. Starkovich has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170005026
    Abstract: A thermal interface material (TIM) using high thermal conductivity nano-particles, particularly ones with large aspect ratios, for enhancing thermal transport across boundary or interfacial layers that exist at bulk material interfaces is disclosed. At least one of the interfacial layers is a vertically aligned metal nanowire array. The nanoparticles do not need to be used in a fluid carrier or as filler material within a bonding adhesive to enhance thermal transport, but simply in a dry solid state. The nanoparticles may be equiaxed or acicular in shape with large aspect ratios like nanorods and nanowires.
    Type: Application
    Filed: September 19, 2016
    Publication date: January 5, 2017
    Inventors: John A. Starkovich, Jesse B. Tice, Edward M. Silverman, Hsiao-Hu Peng
  • Publication number: 20160372438
    Abstract: A thermally-conductive and mechanically-robust bonding method for attaching a metal nanowire (MNW) array to an adjacent surface includes the steps of: removing a template membrane from the MNW; infiltrating the MNW with a bonding material; placing the bonding material on the adjacent surface; bringing an adjacent surface into contact with a top surface of the MNW while the bonding material is bondable; and allowing the bonding material to cool and form a solid bond between the MNW and the adjacent surface. A thermally-conductive and mechanically-robust bonding method for attaching a metal nanowire (MNW) array to an adjacent surface includes the steps of: choosing a bonding material based on a desired bonding process; and without removing the MNW from a template membrane that fills an interstitial volume of the MNW, depositing the bonding material onto a tip of the MNW.
    Type: Application
    Filed: August 29, 2016
    Publication date: December 22, 2016
    Inventors: John A. Starkovich, Edward M. Silverman, Jesse B. Tice, Hsiao-Hu Peng, Michael T. Barako, Kenneth E. Goodson
  • Patent number: 9482477
    Abstract: A thermal interface material (TIM) using high thermal conductivity nano-particles, particularly ones with large aspect ratios, for enhancing thermal transport across boundary or interfacial layers that exist at bulk material interfaces is disclosed. The nanoparticles do not need to be used in a fluid carrier or as filler material within a bonding adhesive to enhance thermal transport, but simply in a dry solid state. The nanoparticles may be equiaxed or acicular in shape with large aspect ratios like nanorods and nanowires.
    Type: Grant
    Filed: July 28, 2014
    Date of Patent: November 1, 2016
    Assignee: Northrop Grumman Systems Corporation
    Inventors: John A. Starkovich, Jesse B. Tice, Edward M. Silverman, Hsiao H. Peng
  • Patent number: 9468989
    Abstract: A thermally-conductive and mechanically-robust bonding method for attaching a metal nanowire (MNW) array to an adjacent surface includes the steps of: removing a template membrane from the MNW; infiltrating the MNW with a bonding material; placing the bonding material on the adjacent surface; bringing an adjacent surface into contact with a top surface of the MNW while the bonding material is bondable; and allowing the bonding material to cool and form a solid bond between the MNW and the adjacent surface. A thermally-conductive and mechanically-robust bonding method for attaching a metal nanowire (MNW) array to an adjacent surface includes the steps of: choosing a bonding material based on a desired bonding process; and without removing the MNW from a template membrane that fills an interstitial volume of the MNW, depositing the bonding material onto a tip of the MNW.
    Type: Grant
    Filed: January 26, 2016
    Date of Patent: October 18, 2016
    Assignees: Northrop Grumman Systems Corporation, The Board of Trustees of the Leland Stanford Junior University
    Inventors: John A. Starkovich, Edward M. Silverman, Jesse B. Tice, Hsiao-Hu Peng, Michael T. Barako, Kenneth E. Goodson
  • Publication number: 20160250710
    Abstract: A thermally-conductive and mechanically-robust bonding method for attaching a metal nanowire (MNW) array to an adjacent surface includes the steps of: removing a template membrane from the MNW; infiltrating the MNW with a bonding material; placing the bonding material on the adjacent surface; bringing an adjacent surface into contact with a top surface of the MNW while the bonding material is bondable; and allowing the bonding material to cool and form a solid bond between the MNW and the adjacent surface. A thermally-conductive and mechanically-robust bonding method for attaching a metal nanowire (MNW) array to an adjacent surface includes the steps of: choosing a bonding material based on a desired bonding process; and without removing the MNW from a template membrane that fills an interstitial volume of the MNW, depositing the bonding material onto a tip of the MNW.
    Type: Application
    Filed: January 26, 2016
    Publication date: September 1, 2016
    Inventors: John A. Starkovich, Edward M. Silverman, Jesse B. Tice, Hsiao-Hu Peng, Michael T. Barako, Kenneth E. Goodson
  • Publication number: 20160251769
    Abstract: A method for making a thermal interface material (TIM) comprises the steps of: depositing a seed layer onto a substrate; attaching a template membrane to the substrate; depositing metal into one or more of the pores of the template membrane, substantially filling the template membrane to create a vertically-aligned metal nanowire (MNW) array comprising a plurality of nanowires that grow upward from the seed layer; and after the template membrane is substantially filled with the deposited metal, removing the template membrane, leaving the plurality of nanowires attached to the seed layer. A TIM comprises: a vertically-aligned MNW array comprising a plurality of nanowires that grow upward from a seed layer deposited on the surface of a template membrane, and the template membrane being removed after MNW growth.
    Type: Application
    Filed: January 26, 2016
    Publication date: September 1, 2016
    Inventors: Edward M. Silverman, John A. Starkovich, Hsiao-Hu Peng, Jesse B. Tice, Michael T. Barako, Conor E. Coyan, Kenneth E. Goodson
  • Publication number: 20160025431
    Abstract: A thermal interface material (TIM) using high thermal conductivity nano-particles, particularly ones with large aspect ratios, for enhancing thermal transport across boundary or interfacial layers that exist at bulk material interfaces is disclosed. The nanoparticles do not need to be used in a fluid carrier or as filler material within a bonding adhesive to enhance thermal transport, but simply in a dry solid state. The nanoparticles may be equiaxed or acicular in shape with large aspect ratios like nanorods and nanowires.
    Type: Application
    Filed: July 28, 2014
    Publication date: January 28, 2016
    Inventors: John A. Starkovich, Jesse B. Tice, Edward M. Silverman, Hsiao H. Peng
  • Publication number: 20140314949
    Abstract: A method includes the steps of receiving a conductor element formed from a plurality of carbon nanotubes; and exposing the conductor element to a controlled amount of a dopant so as to increase the conductance of the conductor element to a desired value, wherein the dopant is one of bromine, iodine, chloroauric acid, hydrochloric acid, hydroiodic acid, nitric acid, and potassium tetrabromoaurate. A method includes the steps of receiving a conductor element formed from a plurality of carbon nanotubes; and exposing the conductor element to a controlled amount of a dopant solution comprising one of chloroauric acid, hydrochloric acid, nitric acid, and potassium tetrabromoaurate, so as to increase the conductance of the conductor element to a desired value.
    Type: Application
    Filed: July 3, 2014
    Publication date: October 23, 2014
    Inventor: John A. Starkovich
  • Patent number: 8808792
    Abstract: A method includes the steps of receiving a conductor element formed from a plurality of carbon nanotubes; and exposing the conductor element to a controlled amount of a dopant so as to increase the conductance of the conductor element to a desired value, wherein the dopant is one of bromine, iodine, chloroauric acid, hydrochloric acid, hydroiodic acid, nitric acid, and potassium tetrabromoaurate. A method includes the steps of receiving a conductor element formed from a plurality of carbon nanotubes; and exposing the conductor element to a controlled amount of a dopant solution comprising one of chloroauric acid, hydrochloric acid, nitric acid, and potassium tetrabromoaurate, so as to increase the conductance of the conductor element to a desired value.
    Type: Grant
    Filed: January 17, 2012
    Date of Patent: August 19, 2014
    Assignee: Northrop Grumman Systems Corporation
    Inventors: John A. Starkovich, Edward M. Silverman, Hsiao-Hu Peng
  • Publication number: 20130183439
    Abstract: A method includes the steps of receiving a conductor element formed from a plurality of carbon nanotubes; and exposing the conductor element to a controlled amount of a dopant so as to increase the conductance of the conductor element to a desired value, wherein the dopant is one of bromine, iodine, chloroauric acid, hydrochloric acid, hydroiodic acid, nitric acid, and potassium tetrabromoaurate. A method includes the steps of receiving a conductor element formed from a plurality of carbon nanotubes; and exposing the conductor element to a controlled amount of a dopant solution comprising one of chloroauric acid, hydrochloric acid, nitric acid, and potassium tetrabromoaurate, so as to increase the conductance of the conductor element to a desired value.
    Type: Application
    Filed: January 17, 2012
    Publication date: July 18, 2013
    Inventors: John A. Starkovich, Edward M. Silverman, Hsiao-Hu Peng
  • Publication number: 20060254683
    Abstract: A liquid propellant is converted to a gelled propellant by use of a nanogellant material having a three-dimensional polymeric structure that either is formed in the propellant itself, or is formed separately from the propellant and later dispersed in the propellant. In one form of the invention, the nanogellant material is bis-trimethoxysilylethane (BTMSE), which, when mixed with a suitable liquid propellant, such as monomethyl hydrazine (MMH), in the presence of water, polymerizes to form a gelled propellant with desirable properties. In the other form of the invention, the nanogellant is polymerized in a solvent separate from the propellant, and is then recovered from the solvent and redispersed in the propellant.
    Type: Application
    Filed: May 10, 2005
    Publication date: November 16, 2006
    Inventors: Thomas Crofoot, John Starkovich
  • Publication number: 20060218940
    Abstract: A long-term cryogen storage system comprising a storage tank shell substantially filled by a nanoporous material in which a stored cryogen is subject to a dramatically lower boil-off rate than when stored in its bulk state. The nanoporous material provides a storage medium in which the cryogen has a higher surface energy term due to extreme surface curvature provided by the nanopores of the storage medium. As a result, the cryogen exhibits an altered thermodynamic state relative to its bulk fluid state and has a substantially reduced vapor pressure, an effectively higher vaporization enthalpy (?Hv), and a lower boiloff rate for a given rate of heat leakage through the storage tank shell.
    Type: Application
    Filed: March 2, 2006
    Publication date: October 5, 2006
    Inventor: John Starkovich
  • Publication number: 20060160939
    Abstract: Composite materials of the invention contain a bulk resin and a filler material. The filler material is in the form of a particle having a particle size less than about 10 micrometers, preferably less than about 1 micrometer, and more preferably less than about 500 nanometers. The composite material is made of three phases—a bulk resin phase, a filler particle phase, and an interphase. The size and extent of the interphase is dependent on the amount and particle size of the filler material and the nature of the resin. The coefficient of thermal expansion or other property of the interphase region is intermediate between that of the bulk resin and the filler particles, and tend to be biased toward those of the filler particles. In a preferred embodiment, the filler material has a coefficient of thermal expansion lower than the coefficient of thermal expansion of the bulk resin.
    Type: Application
    Filed: March 15, 2006
    Publication date: July 20, 2006
    Inventor: John Starkovich
  • Publication number: 20040214377
    Abstract: Filled composite compositions can be used as encapsulants, underfill materials, and potting materials in electronic and optical packages that are subjected to a wide temperature range. The composites contain a matrix and a filler composition. In a preferred embodiment, the matrix is an organic material. The filler composition contains particles of a material that have a negative coefficient of thermal expansion. The filler composition contains particles having a wide range of sizes. Furthermore, the particles exhibit a non-normal, for example, log normal or power-law, particle distribution. The non-normal size distribution of the particles enables the filler composition to be formulated at high levels into organic matrices, resulting in composites that have very low coefficient of thermal expansion to match those of the semiconductor materials in the electronic package or optical components in an optical assembly.
    Type: Application
    Filed: April 28, 2003
    Publication date: October 28, 2004
    Inventors: John A. Starkovich, Gershon Akerling, Larry R. Eaton
  • Publication number: 20030187117
    Abstract: Composite materials of the invention contain a bulk resin and a filler material. The filler material is in the form of a particle having a particle size less than about 10 micrometers, preferably less than about 1 micrometer, and more preferably less than about 500 nanometers. The composite material is made of three phases—a bulk resin phase, a filler particle phase, and an interphase. The size and extent of the interphase is dependent on the amount and particle size of the filler material and the nature of the resin. The coefficient of thermal expansion or other property of the interphase region is intermediate between that of the bulk resin and the filler particles, and tend to be biased toward those of the filler particles. In a preferred embodiment, the filler material has a coefficient of thermal expansion lower than the coefficient of thermal expansion of the bulk resin.
    Type: Application
    Filed: March 29, 2002
    Publication date: October 2, 2003
    Inventor: John A. Starkovich
  • Patent number: 6610404
    Abstract: A magnetorheological fluid (32) having controlled-shaped particles (56,68), such as rod, prism, tetrahedral, and other regularly shaped particles. The regularly shaped particles (56, 68) increase the field yield and responsive to particle interaction forces. The magnetorheological material has particular use for space applications such as vibration isolators, vibration dampeners, and latch mechanisms.
    Type: Grant
    Filed: February 13, 2001
    Date of Patent: August 26, 2003
    Assignee: TRW Inc.
    Inventors: John A. Starkovich, Emil M. Shtarkman
  • Publication number: 20020110704
    Abstract: A magnetorheological fluid (32) having controlled-shaped particles (56,68), such as rod, prism, tetrahedral, and other regularly shaped particles. The regularly shaped particles (56, 68) increase the field yield and responsive to particle interaction forces. The magnetorheological material has particular use for space applications such as vibration isolators, vibration dampeners, and latch mechanisms.
    Type: Application
    Filed: February 13, 2001
    Publication date: August 15, 2002
    Inventors: John A. Starkovich, Emil M. Shtarkman
  • Patent number: 5921357
    Abstract: The present invention provides an electrorheological magnetic (ERM) fluid-based rotary motion damper (12). According to the invention, the ERM fluid-based rotary motion damper (12) generally includes an input shaft (18) coupled to a first damping member (16) and rotatably supporting a second damping member (20). A cylinder (28) coupled about the first damping member (16) rotatably engages a housing (36) circumferentially coupled about the second damping member (20). As such, the cylinder (28) is configured for rotary movement relative to the housing (36). ERM fluid (56) disposed in the housing (36) surrounds the cylinder (28) such that it coacts with the housing (36) and cylinder (28). In the presence of a magnetic field, the ERM fluid (56), cylinder (28) and housing (36) frictionally control the rotary movement of the first damping member (16) relative to the second damping member (20).
    Type: Grant
    Filed: April 14, 1997
    Date of Patent: July 13, 1999
    Assignee: TRW Inc.
    Inventors: John A. Starkovich, Emil M. Shtarkman, Louis A. Rosales
  • Patent number: 5655757
    Abstract: An apparatus (40) is connectable between relatively movable parts (12, 14) to resist relative vibration of the parts. The apparatus comprises a first ring-shaped member (50) having a first platform surface (54) engageable with one part (12). A second ring-shaped member (60) has a second platform surface (64) engageable with another part (14). One of the first and second ring-shaped members (50, 60) defines a series of sealed fluid chambers (48) located between the first and second members (50, 60) and spaced apart from each other around the first and second members. Each chamber (48) contains a fluid having a resistance to shear which varies in response to an energy field acting on the fluid. Each chamber (48) has its own respective blade member (42) connected to one of the first and second members (50, 60). The blade member (42) extends into the associated chamber (48).
    Type: Grant
    Filed: February 17, 1995
    Date of Patent: August 12, 1997
    Assignee: TRW Inc.
    Inventors: John A. Starkovich, Emil M. Shtarkman
  • Patent number: 5428988
    Abstract: The present invention relates to a detector for detecting leaks of a gas. The present invention is particularly applicable to a vehicle occupant restraint apparatus (10) which has a container (14) for an exothermically reactable gas mixture (18). An exothermic reaction of the gas mixture (18) released from container (14) deploys an occupant restraint (12). The detector has an electrically conductive sensor element (44). The sensor element (44) is positioned within an envelope (40) surrounding a portion of container (14) so as to be exposed to the gas mixture (18) if leaked from container (14). The sensor element (44) is part of an electric circuit (46). The electrical resistance of the sensor element (44) varies when the sensor element is exposed to the leaked gas mixture. The electric circuit (46) also has a power source (64) including a timing circuit (52) for providing an intermittent electric current through the sensor element (44). The timing circuit (52) has an off-period of relatively long duration.
    Type: Grant
    Filed: December 13, 1993
    Date of Patent: July 4, 1995
    Assignee: TRW Vehicle Safety Systems Inc.
    Inventor: John A. Starkovich