Patents by Inventor John A. Tenney

John A. Tenney has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230323433
    Abstract: Disclosed herein are methods for performing assays, including general functional assays, on a biological cell. Also disclosed herein are methods of barcoding the 5? ends of RNA from a biological cell and methods of preparation of expression constructs from the barcoded RNA. The barcoded RNA can encode proteins of interest, such as B cell receptor (BCR) heavy and light chain sequences. The expression constructs can be generated individually or in a paired/multiplexed manner, allowing rapid re-expression of individual proteins or protein complexes.
    Type: Application
    Filed: March 6, 2023
    Publication date: October 12, 2023
    Applicant: Berkeley Lights, Inc.
    Inventors: Matthew Asuka Kubit, Joshua David Mast, John Junyeon Kim, Alexander Gerald Olson, Preston Lock Ng, Arlvin Louis Ellefson, Shruthi Sreedhar Kubatur, Vincent Haw Tien Pai, Minha Park, Po-Yuan Tung, Jason C. Briggs, Patrick N. Ingram, Katrine Elise Dailey, Maryam Shansab, Jason M. McEwen, Adrienne T. Higa, Hongye Zhou, Zhen Hu, John A. Tenney
  • Publication number: 20230282313
    Abstract: Disclosed are methods, systems, and articles of manufacture for performing a process on biological samples. An analysis of biological samples in multiple regions of interest in a microfluidic device and a timeline correlated with the analysis may be identified. One or more region-of-interest types for the multiple regions of interest may be determined; and multiple characteristics may be determined for the biological samples based at least in part upon the one or more region-of-interest types. Associated data that respectively correspond to the multiple regions of interest in a user interface for at least a portion of the biological samples in the user interface based at least in part upon the multiple identifiers and the timeline. A count of the biological samples in a region of interest may be determined based at least in part upon a class or type of data using a convolutional neural network (CNN).
    Type: Application
    Filed: October 21, 2022
    Publication date: September 7, 2023
    Applicant: BERKELEY LIGHTS, INC.
    Inventors: Darshan Thaker, Keith J. Breinlinger, Vincent Haw Tien Pai, Christoph Andreas Neyer, Thomas M. Vetterli, Hayley M. Bennett, Elisabeth Marie Walczak, Alexander Gerald Olson, Wesley Arthur Zink, John A. Tenney, Oleksandr Tokmakov, Igor Fastnacht, Yuriy Nicheporuk, Andriy Koval, Khrystyna Andres, Alona Kostenko
  • Publication number: 20230105220
    Abstract: Disclosed are methods, systems, and articles of manufacture for performing a process on biological samples. An analysis of biological samples in multiple regions of interest in a microfluidic device and a timeline correlated with the analysis may be identified. One or more region-of-interest types for the multiple regions of interest may be determined; and multiple characteristics may be determined for the biological samples based at least in part upon the one or more region-of-interest types. Associated data that respectively correspond to the multiple regions of interest in a user interface for at least a portion of the biological samples in the user interface based at least in part upon the multiple identifiers and the timeline. A count of the biological samples in a region of interest may be determined based at least in part upon a class or type of data using a convolutional neural network (CNN).
    Type: Application
    Filed: May 16, 2022
    Publication date: April 6, 2023
    Applicant: BERKELEY LIGHTS, INC.
    Inventors: Darshan Thaker, Keith J. Breinlinger, Vincent Haw Tien Pai, Christoph Andreas Neyer, Thomas M. Vetterli, Hayley M. Bennett, Elisabeth Marie Walczak, Alexander Gerald Olson, Wesley Arthur Zink, John A. Tenney, Oleksandr Tokmakov, Igor Fastnacht, Yuriy Nicheporuk, Andriy Koval, Khrystyna Andres, Alona Kostenko
  • Publication number: 20230092258
    Abstract: Methods of selectively positioning a micro-object in a microfluidic device are described in this application. The microfluidic device can comprise an enclosure having an inlet, an outlet, and a flow region connecting the inlet and outlet, and an electrode activation substrate having a photoconductive layer.
    Type: Application
    Filed: June 17, 2022
    Publication date: March 23, 2023
    Inventors: Volker L.S. Kurz, John A. Tenney, Long Van Le
  • Publication number: 20220401954
    Abstract: Systems for operating a microfluidic device are described. The systems comprise a first surface configured to interface and operatively couple with a microfluidic device and a lid configured to retain the microfluidic device on the first surface. The lid comprises a first portion having a first fluid port configured to operatively couple with and flow fluidic medium into and/or out of a first fluid inlet/outlet of the microfluidic device and a second portion having a second fluid port configured to operatively couple with and flow fluidic medium into and/or out of a second fluid inlet/outlet of the microfluidic device. The second portion of the lid is separable from the first portion and movable between a closed position in which the second fluid port of the second portion of the cover is operatively coupled with the second fluid inlet/outlet of the microfluidic device and an open position in which a portion of the microfluidic device that contains the second fluid inlet/outlet is exposed.
    Type: Application
    Filed: April 25, 2022
    Publication date: December 22, 2022
    Inventors: Angel Navas Angeles, Johannes Paul Sluis, John A. Tenney, Yogesh Khemchandra Dhande, Patrick N. Ingram, Erin Chia-wei Hsi, Christopher C. Shing, John Junyeon Kim, Keith J. Breinlinger, Raziel Solomon Alon
  • Patent number: 11521709
    Abstract: Disclosed are methods, systems, and articles of manufacture for performing a process on biological samples. An analysis of biological samples in multiple regions of interest in a microfluidic device and a timeline correlated with the analysis may be identified. One or more region-of-interest types for the multiple regions of interest may be determined; and multiple characteristics may be determined for the biological samples based at least in part upon the one or more region-of-interest types. Associated data that respectively correspond to the multiple regions of interest in a user interface for at least a portion of the biological samples in the user interface based at least in part upon the multiple identifiers and the timeline. A count of the biological samples in a region of interest may be determined based at least in part upon a class or type of data using a convolutional neural network (CNN).
    Type: Grant
    Filed: May 19, 2021
    Date of Patent: December 6, 2022
    Assignee: Berkeley Lights Inc.
    Inventors: Darshan Thaker, Keith J. Breinlinger, Vincent Haw Tien Pai, Christoph Andreas Neyer, Thomas M. Vetterli, Hayley M. Bennett, Elisabeth Marie Walczak, Alexander Gerald Olson, Wesley Arthur Zink, John A. Tenney, Oleksandr Tokmakov, Igor Fastnacht, Yuriy Nicheporuk, Andriy Koval, Khrystyna Andres, Alona Kostenko
  • Patent number: 11510744
    Abstract: Methods and systems are provided useful in various procedures, including hair harvesting and implantation, and further including computer-implemented and/or robotic hair transplantation. Methodologies are provided which enable a tool, such as a hair harvesting or a hair implantation tool, to proceed at least under a partial computer control in a selected direction of travel along a donor or recipient area of the patient, as well as changing direction of travel based on desired harvesting and/or implantation criteria.
    Type: Grant
    Filed: August 28, 2017
    Date of Patent: November 29, 2022
    Assignee: Venus Concept Inc.
    Inventors: John A. Tenney, (Radhika) Mohan Bodduluri, Hui Zhang
  • Publication number: 20220250071
    Abstract: Methods, systems and kits are described herein for detecting the results of an assay. In particular, the methods, systems and devices of the present disclosure rely on a difference between the diffusion rates of a reporter molecule and an analyte of interest in order to quantify an amount of analyte in a microfluidic device. The analyte may be a secreted product of a biological micro-object.
    Type: Application
    Filed: November 23, 2021
    Publication date: August 11, 2022
    Inventors: Troy A. LIONBERGER, Matthew E. FOWLER, Phillip J. M. ELMS, Kevin D. LOUTHERBACK, Randall D. LOWE, JR., Jian GONG, J. Tanner NEVILL, Gang F. WANG, Gregory G. LAVIEU, John A. TENNEY, Aathavan KARUNAKARAN, Anupam SINGHAL, I-Jong LIN
  • Patent number: 11376591
    Abstract: Optically-actuated microfluidic devices permit the use of spatially-modulated light to manipulate micro-objects such as biological cells. Systems and methods are described for providing sequences of light patterns to move and direct a plurality of micro-objects within the environment of a microfluidic device. The sequenced light patterns provide improved efficiency in directing the transport of the plurality of micro-objects. Other embodiments are described.
    Type: Grant
    Filed: June 5, 2020
    Date of Patent: July 5, 2022
    Assignee: Berkeley Lights, Inc.
    Inventors: Troy A. Lionberger, Brandon R. Bruhn, John A. Tenney, Eric D. Hobbs
  • Publication number: 20220130158
    Abstract: Methods are provided for the automated detection and/or counting of micro-objects in a microfluidic device. In addition, methods are provided for repositioning micro-objects in a microfluidic device. In addition, methods are provided for separating micro-objects in a spatial region of the microfluidic device.
    Type: Application
    Filed: October 6, 2021
    Publication date: April 28, 2022
    Inventors: Hansohl E. KIM, John A. TENNEY, Joshua F. SLOCUM
  • Patent number: 11203018
    Abstract: Methods, systems and kits are described herein for detecting the results of an assay. In particular, the methods, systems and devices of the present disclosure rely on a difference between the diffusion rates of a reporter molecule and an analyte of interest in order to quantify an amount of analyte in a microfluidic device. The analyte may be a secreted product of a biological micro-object.
    Type: Grant
    Filed: October 15, 2018
    Date of Patent: December 21, 2021
    Assignee: Berkeley Lights, Inc.
    Inventors: Troy A. Lionberger, Matthew E. Fowler, Phillip J. M. Elms, Kevin D. Loutherback, Randall D. Lowe, Jr., Jian Gong, J. Tanner Nevill, Gang F. Wang, Gregory G. Lavieu, John A. Tenney, Aathavan Karunakaran, Anupam Singhal, I-Jong Lin
  • Publication number: 20210349075
    Abstract: Methods are provided for the assay of secreted biomolecules using automated detection and characterization of micro-objects in a microfluidic device. The biomolecules can be secreted by cells, particularly immunological cells, such as T cells. The biomolecules being assayed can include cytokines, growth factors, and the like. Methods are also provided for assaying the cytotoxicity of a cell with respect to another, target cell. Also provided are kits and non-transitory computer-readable media in which programs are stored for causing a system comprising a computer to perform automated methods for detecting secreted biomolecules and/or cytotoxicity in a microfluidic device.
    Type: Application
    Filed: April 27, 2021
    Publication date: November 11, 2021
    Inventors: Yelena BRONEVETSKY, Annamaria MOCCIARO, Guido K. STADLER, Peter J. BEEMILLER, Natalie C. MARKS, Duane SMITH, Vincent Haw Tien PAI, Jason M. MCEWEN, Amanda L. GOODSELL, John A. TENNEY, Thomas M. VETTERLI, Hansohl E. Kim
  • Patent number: 11170200
    Abstract: Methods are provided for the automated detection and/or counting of micro-objects in a microfluidic device. In addition, methods are provided for repositioning micro-objects in a microfluidic device. In addition, methods are provided for separating micro-objects in a spatial region of the microfluidic device.
    Type: Grant
    Filed: May 31, 2019
    Date of Patent: November 9, 2021
    Assignee: Berkeley Lights, Inc.
    Inventors: Hansohl E. Kim, John A. Tenney, Joshua F. Slocum
  • Publication number: 20210272654
    Abstract: Disclosed are methods, systems, and articles of manufacture for performing a process on biological samples. An analysis of biological samples in multiple regions of interest in a microfluidic device and a timeline correlated with the analysis may be identified. One or more region-of-interest types for the multiple regions of interest may be determined; and multiple characteristics may be determined for the biological samples based at least in part upon the one or more region-of-interest types. Associated data that respectively correspond to the multiple regions of interest in a user interface for at least a portion of the biological samples in the user interface based at least in part upon the multiple identifiers and the timeline. A count of the biological samples in a region of interest may be determined based at least in part upon a class or type of data using a convolutional neural network (CNN).
    Type: Application
    Filed: May 19, 2021
    Publication date: September 2, 2021
    Applicant: BERKELEY LIGHTS, INC.
    Inventors: Darshan Thaker, Keith J. Breinlinger, Vincent Haw Tien Pai, Christoph Andreas Neyer, Thomas M. Vetterli, Hayley M. Bennett, Elisabeth Marie Walczak, Alexander Gerald Olson, Wesley Arthur Zink, John A. Tenney, Oleksandr Tokmakov, Igor Fastnacht, Yuriy Nicheporuk, Andriy Koval, Khrystyna Andres, Alona Kostenko
  • Publication number: 20210213444
    Abstract: Optically-actuated microfluidic devices permit the use of spatially-modulated light to manipulate micro-objects such as biological cells. Systems and methods are described for providing sequences of light patterns to move and direct a plurality of micro-objects within the environment of a microfluidic device. The sequenced light patterns provide improved efficiency in directing the transport of the plurality of micro-objects. Other embodiments are described.
    Type: Application
    Filed: June 5, 2020
    Publication date: July 15, 2021
    Inventors: Troy A. Lionberger, Brandon R. Bruhn, John A. Tenney, Eric D. Hobbs
  • Publication number: 20210209752
    Abstract: Methods are provided for the automated detection, characterization, and selection of micro-objects in a microfluidic device. In addition, methods are provided for grouping detected micro-objects into subgroups that share the same characteristics and, optionally, repositioning micro-objects in a selected sub-population within the microfluidic device. For example, micro-objects in a selected sub-population can be moved into sequestration pens. The methods also provide for visual displays of the micro-object characteristics, such as two- or three-dimensional graphs, and for user-based definition and/or selection of sub-populations of the detected micro-objects. In addition, non-transitory computer-readable medium in which a program is stored and systems for carrying out any of the disclosed methods are provided.
    Type: Application
    Filed: November 24, 2020
    Publication date: July 8, 2021
    Inventors: John A. TENNEY, Thomas M. VETTERLI, Hansohl E. KIM
  • Publication number: 20210090252
    Abstract: Methods are provided for the automated detection of micro-objects in a microfluidic device. In addition, methods are provided for repositioning micro-objects in a microfluidic device. In addition, methods are provided for separating micro-objects in a spatial region of the microfluidic device.
    Type: Application
    Filed: October 5, 2020
    Publication date: March 25, 2021
    Inventors: Fenglei Du, Paul M. Lundquist, John A. Tenney, Troy A. Lionberger
  • Patent number: 10832404
    Abstract: Methods are provided for the automated detection of micro-objects in a microfluidic device. In addition, methods are provided for repositioning micro-objects in a microfluidic device. In addition, methods are provided for separating micro-objects in a spatial region of the microfluidic device.
    Type: Grant
    Filed: June 5, 2018
    Date of Patent: November 10, 2020
    Assignee: Berkeley Lights, Inc.
    Inventors: Fenglei Du, Paul M. Lundquist, John A. Tenney, Troy A. Lionberger
  • Patent number: 10675625
    Abstract: Optically-actuated microfluidic devices permit the use of spatially-modulated light to manipulate micro-objects such as biological cells. Systems and methods are described for providing sequences of light patterns to move and direct a plurality of micro-objects within the environment of a microfluidic device. The sequenced light patterns provide improved efficiency in directing the transport of the plurality of micro-objects. Other embodiments are described.
    Type: Grant
    Filed: April 14, 2017
    Date of Patent: June 9, 2020
    Assignee: Berkeley Lights, Inc
    Inventors: Troy A. Lionberger, Brandon R. Bruhn, John A. Tenney, Eric D. Hobbs
  • Publication number: 20190384963
    Abstract: Methods are provided for the automated detection and/or counting of micro-objects in a microfluidic device. In addition, methods are provided for repositioning micro-objects in a microfluidic device. In addition, methods are provided for separating micro-objects in a spatial region of the microfluidic device.
    Type: Application
    Filed: May 31, 2019
    Publication date: December 19, 2019
    Inventors: Hansohl E. KIM, John A. TENNEY, Joshua F. SLOCUM