Patents by Inventor John Arthur Mitsuru Petersen

John Arthur Mitsuru Petersen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11052943
    Abstract: A control system is configured to receive a first signal indicative of a current position of a vehicle and a second signal indicative of a desired path for the vehicle. The control system is configured to calculate a virtual path between the current position and a target position on the desired path and to output a third signal indicative of curvature command corresponding to an initial curvature of the virtual path to cause a steering control system of the vehicle to adjust a steering angle of the vehicle. The control is also configured to iteratively receive an updated current position, receive any updates to the desired path, calculate an updated target position, calculate an updated virtual path based on the updated current position and updated desired path, and output an updated curvature command corresponding to a respective initial curvature of the updated virtual path as the vehicle travels across a surface.
    Type: Grant
    Filed: November 8, 2018
    Date of Patent: July 6, 2021
    Assignee: CNH Industrial America LLC
    Inventors: Nathan Eric Bunderson, John Arthur Mitsuru Petersen, Brian Robert Ray
  • Patent number: 10784841
    Abstract: A control system for a work vehicle includes a controller, a processor, and a memory that causes the processor to receive, via a sensor assembly, sensor signals and convert the sensor signals into a plurality of entries of a full measurement vector. The memory devices causes the processor to determine a first state vector using IMU Kalman filter, update a first subset of entries the full state vector, determine a second state vector using a spatial positioning Kalman filter, update a second subset of entries the full state vector based on the second state vector, determine a third state vector using a vehicle Kalman filter, update a third subset of entries of the plurality of entries of the full state vector based on the third state vector, and control movement of the work vehicle based on at least one of the first state vector, the second state vector, the third state vector, and the full state vector.
    Type: Grant
    Filed: March 8, 2018
    Date of Patent: September 22, 2020
    Assignees: CNH Industrial America LLC, Autonomous Solutions, Inc.
    Inventors: Matthew D. Berkemeier, Jeffrey Lee Ferrin, John Arthur Mitsuru Petersen
  • Patent number: 10494789
    Abstract: An electronic control system for a work allows for control of steering despite movement of an implement that may support a load. Control may be based on vehicle position, velocity, acceleration, center of gravity, and heading. A control point is determined despite movement of the load, and may be based upon one or more of roll, yaw, and pitch of the vehicle. The vehicle may be of the type that allows for control only of wheel or track speed and rotational direction. A desired center of gravity is maintained while controlling an error between a desired vehicle trajectory and a determined trajectory in a closed loop manner.
    Type: Grant
    Filed: January 6, 2017
    Date of Patent: December 3, 2019
    Assignees: CNH Industrial America LLC, Autonomous Solutions, Inc.
    Inventors: Matthew D. Berkemeier, Jeffrey Lee Ferrin, John Arthur Mitsuru Petersen
  • Publication number: 20190280674
    Abstract: A control system for a work vehicle includes a controller, a processor, and a memory that causes the processor to receive, via a sensor assembly, sensor signals and convert the sensor signals into a plurality of entries of a full measurement vector. The memory devices causes the processor to determine a first state vector using IMU Kalman filter, update a first subset of entries the full state vector, determine a second state vector using a spatial positioning Kalman filter, update a second subset of entries the full state vector based on the second state vector, determine a third state vector using a vehicle Kalman filter, update a third subset of entries of the plurality of entries of the full state vector based on the third state vector, and control movement of the work vehicle based on at least one of the first state vector, the second state vector, the third state vector, and the full state vector.
    Type: Application
    Filed: March 8, 2018
    Publication date: September 12, 2019
    Inventors: Matthew D. Berkemeier, Jeffrey Lee Ferrin, John Arthur Mitsuru Petersen
  • Publication number: 20190077456
    Abstract: A control system is configured to receive a first signal indicative of a current position of a vehicle and a second signal indicative of a desired path for the vehicle. The control system is configured to calculate a virtual path between the current position and a target position on the desired path and to output a third signal indicative of curvature command corresponding to an initial curvature of the virtual path to cause a steering control system of the vehicle to adjust a steering angle of the vehicle. The control is also configured to iteratively receive an updated current position, receive any updates to the desired path, calculate an updated target position, calculate an updated virtual path based on the updated current position and updated desired path, and output an updated curvature command corresponding to a respective initial curvature of the updated virtual path as the vehicle travels across a surface.
    Type: Application
    Filed: November 8, 2018
    Publication date: March 14, 2019
    Inventors: Nathan Eric Bunderson, John Arthur Mitsuru Petersen, Brian Robert Ray
  • Patent number: 10144453
    Abstract: A control system is configured to receive a first signal indicative of a current position of a vehicle and a second signal indicative of a desired path for the vehicle. The control system is configured to calculate a virtual path between the current position and a target position on the desired path and to output a third signal indicative of curvature command corresponding to an initial curvature of the virtual path to cause a steering control system of the vehicle to adjust a steering angle of the vehicle. The control is also configured to iteratively receive an updated current position, receive any updates to the desired path, calculate an updated target position, calculate an updated virtual path based on the updated current position and updated desired path, and output an updated curvature command corresponding to a respective initial curvature of the updated virtual path as the vehicle travels across a surface.
    Type: Grant
    Filed: April 13, 2016
    Date of Patent: December 4, 2018
    Assignees: CNH Industrial America LLC, Autonomous Solutions, Inc.
    Inventors: Nathan Eric Bunderson, John Arthur Mitsuru Petersen, Brian Robert Ray
  • Patent number: 10031525
    Abstract: A swath tracking system for an off-road vehicle includes a control system with a processor and a memory. The control system is configured to receive a plurality of vehicle location points and a current vehicle state, wherein the current vehicle state comprises a current vehicle location, generate a planned vehicle path through one or more of the plurality of vehicle location points, generate a correction path from the current vehicle location to a point along the planned vehicle path ahead of the current vehicle location along a direction of travel, generate a blended path by blending the planned vehicle path and the correction path based at least in part on an assigned weight, wherein the assigned weight is based at least in part on a heading error, a distance between the current vehicle location and the planned path, or a combination thereof, and guide the off-road vehicle along the blended path.
    Type: Grant
    Filed: June 10, 2016
    Date of Patent: July 24, 2018
    Assignees: CNH Industrial America LLC, Autonomous Solutions, Inc.
    Inventors: Peter John Dix, Brett Carson McClelland, Brendan Paul McCarthy, Brian Robert Ray, Nathan Eric Bunderson, Robert Dean Ashby, John Arthur Mitsuru Petersen, Daniel John Morwood, Bret Todd Turpin
  • Publication number: 20170357262
    Abstract: A swath tracking system for an off-road vehicle includes a control system with a processor and a memory. The control system is configured to receive a plurality of vehicle location points and a current vehicle state, wherein the current vehicle state comprises a current vehicle location, generate a planned vehicle path through one or more of the plurality of vehicle location points, generate a correction path from the current vehicle location to a point along the planned vehicle path ahead of the current vehicle location along a direction of travel, generate a blended path by blending the planned vehicle path and the correction path based at least in part on an assigned weight, wherein the assigned weight is based at least in part on a heading error, a distance between the current vehicle location and the planned path, or a combination thereof, and guide the off-road vehicle along the blended path.
    Type: Application
    Filed: June 10, 2016
    Publication date: December 14, 2017
    Inventors: Peter John Dix, Brett Carson McClelland, Brendan Paul McCarthy, Brian Robert Ray, Nathan Eric Bunderson, Robert Dean Ashby, John Arthur Mitsuru Petersen, Daniel John Morwood, Bret Todd Turpin
  • Publication number: 20170355398
    Abstract: A vehicle system includes a spatial location system configured to derive a geographic position of an autonomous vehicle. The vehicle system further includes a computing device communicatively coupled to the spatial location system, the computing device comprising a processor. The processor is configured select a calibration mode via a user input. The processor is also configured to execute an automatic steering calibration based on the calibration mode to update one or more steering parameters, wherein executing the automatic steering calibration comprises driving the vehicle via autoguidance to spatially follow a desired path segment.
    Type: Application
    Filed: June 10, 2016
    Publication date: December 14, 2017
    Inventors: Peter John Dix, John Arthur Mitsuru Petersen, Brenden Paul McCarthy, Nathan Eric Bunderson, Brian Robert Ray
  • Publication number: 20170297621
    Abstract: A control system is configured to receive a first signal indicative of a current position of a vehicle and a second signal indicative of a desired path for the vehicle. The control system is configured to calculate a virtual path between the current position and a target position on the desired path and to output a third signal indicative of curvature command corresponding to an initial curvature of the virtual path to cause a steering control system of the vehicle to adjust a steering angle of the vehicle. The control is also configured to iteratively receive an updated current position, receive any updates to the desired path, calculate an updated target position, calculate an updated virtual path based on the updated current position and updated desired path, and output an updated curvature command corresponding to a respective initial curvature of the updated virtual path as the vehicle travels across a surface.
    Type: Application
    Filed: April 13, 2016
    Publication date: October 19, 2017
    Inventors: Nathan Eric Bunderson, John Arthur Mitsuru Petersen, Brian Robert Ray
  • Publication number: 20170191244
    Abstract: An electronic control system for a work allows for control of steering despite movement of an implement that may support a load. Control may be based on vehicle position, velocity, acceleration, center of gravity, and heading. A control point is determined despite movement of the load, and may be based upon one or more of roll, yaw, and pitch of the vehicle. The vehicle may be of the type that allows for control only of wheel or track speed and rotational direction. A desired center of gravity is maintained while controlling an error between a desired vehicle trajectory and a determined trajectory in a closed loop manner.
    Type: Application
    Filed: January 6, 2017
    Publication date: July 6, 2017
    Inventors: Matthew D. Berkemeier, Jeffrey Lee Ferrin, John Arthur Mitsuru Petersen