Patents by Inventor John B. Langley
John B. Langley has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 11896357Abstract: Systems and methods are provided for detecting and analyzing changes in a body. For example, a system includes an electric field generator configured to produce an electric field. The system includes an external sensor device configured to detect physical changes in the electric field, where the physical changes affect amplitude and frequency of the electric field. The system includes a quadrature demodulator configured to detect changes of the frequency of the output of the electric field generator. The system includes an amplitude reference source and an amplitude comparison switch configured to detect changes of the amplitude of the output of the electric field generator. The system includes a signal processor configured to analyze the changes of the amplitude and frequency of the output of the electric field generator.Type: GrantFiled: November 4, 2022Date of Patent: February 13, 2024Assignee: Life Detection Technologies, Inc.Inventors: John B. Langley, II, Guy McIlroy
-
Patent number: 11684283Abstract: Systems and methods are provided for detecting and analyzing changes in a body. A system includes an electric field generator, an external sensor device, a quadrature demodulator, and a controller. The electric field generator is configured to generate an electric field that associates with a body. The external sensor device sends information to the electric field generator and is configured to detect a physical change in the body in the electric field, where the physical change causes a frequency change of the electric field. The quadrature demodulator receives the electric field from the electric field generator and is configured to detect the frequency change of the electric field and to produce a detected response. The controller, coupled to the electric field generator, is configured to output a frequency control signal to the electric field generator and to modify the frequency of the electric field by adjusting the frequency control signal.Type: GrantFiled: December 9, 2021Date of Patent: June 27, 2023Assignee: Life Detection Technologies, Inc.Inventors: John B. Langley, II, Guy McIlroy
-
Patent number: 11523745Abstract: Systems and methods are provided for detecting and analyzing changes in a body. For example, a system includes an electric field generator configured to produce an electric field. The system includes an external sensor device configured to detect physical changes in the electric field, where the physical changes affect amplitude and frequency of the electric field. The system includes a quadrature demodulator configured to detect changes of the frequency of the output of the electric field generator. The system includes an amplitude reference source and an amplitude comparison switch configured to detect changes of the amplitude of the output of the electric field generator. The system includes a signal processor configured to analyze the changes of the amplitude and frequency of the output of the electric field generator.Type: GrantFiled: May 10, 2021Date of Patent: December 13, 2022Assignee: Life Detection Technologies, Inc.Inventors: John B. Langley, II, Guy McIlroy
-
Patent number: 11253163Abstract: Systems and methods are provided for detecting and analyzing changes in a body. A system includes an electric field generator, an external sensor device, a quadrature demodulator, and a controller. The electric field generator is configured to generate an electric field that associates with a body. The external sensor device sends information to the electric field generator and is configured to detect a physical change in the body in the electric field, where the physical change causes a frequency change of the electric field. The quadrature demodulator receives the electric field from the electric field generator and is configured to detect the frequency change of the electric field and to produce a detected response. The controller, coupled to the electric field generator, is configured to output a frequency control signal to the electric field generator and to modify the frequency of the electric field by adjusting the frequency control signal.Type: GrantFiled: March 19, 2020Date of Patent: February 22, 2022Assignee: Life Detection Technologies, Inc.Inventors: John B. Langley, II, Guy McIlroy
-
Patent number: 11224353Abstract: Systems and methods are provided for detecting and analyzing changes in a body. A system includes an electric field generator, an external sensor device, a quadrature demodulator, and a controller. The electric field generator is configured to generate an electric field that associates with a body. The external sensor device sends information to the electric field generator and is configured to detect a physical change in the body in the electric field, where the physical change causes a frequency change of the electric field. The quadrature demodulator receives the electric field from the electric field generator and is configured to detect the frequency change of the electric field and to produce a detected response. The controller, coupled to the electric field generator, is configured to output a frequency control signal to the electric field generator and to modify the frequency of the electric field by adjusting the frequency control signal.Type: GrantFiled: March 19, 2020Date of Patent: January 18, 2022Assignee: Life Detection Technologies, Inc.Inventors: John B. Langley, II, Guy McIlroy
-
Patent number: 11026593Abstract: Systems and methods are provided for detecting and analyzing changes in a body. For example, a system includes an electric field generator configured to produce an electric field. The system includes an external sensor device configured to detect physical changes in the electric field, where the physical changes affect amplitude and frequency of the electric field. The system includes a quadrature demodulator configured to detect changes of the frequency of the output of the electric field generator. The system includes an amplitude reference source and an amplitude comparison switch configured to detect changes of the amplitude of the output of the electric field generator. The system includes a signal processor configured to analyze the changes of the amplitude and frequency of the output of the electric field generator.Type: GrantFiled: August 8, 2018Date of Patent: June 8, 2021Assignee: LIFE DETECTION TECHNOLOGIES, INC.Inventors: John B. Langley, II, Guy McIlroy
-
Patent number: 10631752Abstract: Systems and methods are provided for detecting and analyzing changes in a body. A system includes an electric field generator, an external sensor device, a quadrature demodulator, and a controller. The electric field generator is configured to generate an electric field that associates with a body. The external sensor device sends information to the electric field generator and is configured to detect a physical change in the body in the electric field, where the physical change causes a frequency change of the electric field. The quadrature demodulator receives the electric field from the electric field generator and is configured to detect the frequency change of the electric field and to produce a detected response. The controller, coupled to the electric field generator, is configured to output a frequency control signal to the electric field generator and to modify the frequency of the electric field by adjusting the frequency control signal.Type: GrantFiled: September 24, 2018Date of Patent: April 28, 2020Assignee: LIFE DETECTION TECHNOLOGIES, INC.Inventors: John B. Langley, II, Guy McIlroy
-
Patent number: 10080507Abstract: Systems and methods are provided for detecting and analyzing changes in a body. For example, a system includes an electric field generator configured to produce an electric field. The system includes an external sensor device configured to detect physical changes in the electric field, where the physical changes affect amplitude and frequency of the electric field. The system includes a quadrature demodulator configured to detect changes of the frequency of the output of the electric field generator. The system includes an amplitude reference source and an amplitude comparison switch configured to detect changes of the amplitude of the output of the electric field generator. The system includes a signal processor configured to analyze the changes of the amplitude and frequency of the output of the electric field generator.Type: GrantFiled: January 27, 2017Date of Patent: September 25, 2018Assignee: Life Detection Technologies, Inc.Inventors: John B. Langley, II, Guy McIlroy
-
Patent number: 7706247Abstract: The present invention provides such a need by utilizing a frequency offset differential pulse position modulation scheme to transmit data between computing devices within a wireless network system. The differential pulse position modulation component of the scheme enables the present invention to provide relative immunity to interference for the system. In particular, such immunity from interference is achieved by utilizing a blanking time between pulse positions, which is large enough to allow the interference between frequency offset—differential pulse position modulation pulses to subside. The frequency offset component of the scheme enables the system to utilize multiple frequency channels to enable the system to achieve higher data rates. In particular, by utilizing a time offset between the frequency channels, the blanking time can be reduced, thereby increasing the amount of data that can be transmitted with a set period of time.Type: GrantFiled: August 14, 2006Date of Patent: April 27, 2010Inventors: John B. Langley, Michael Mancusi
-
Patent number: 7626918Abstract: The present invention provides such a need by utilizing a frequency offset differential pulse position modulation scheme to transmit data between computing devices within a wireless network system. The differential pulse position modulation component of the scheme enables the present invention to provide relative immunity to interference for the system. In particular, such immunity from interference is achieved by utilizing a blanking time between pulse positions, which is large enough to allow the interference between frequency offset—differential pulse position modulation pulses to subside. The frequency offset component of the scheme enables the system to utilize multiple frequency channels to enable the system to achieve higher data rates. In particular, by utilizing a time offset between the frequency channels, the blanking time can be reduced, thereby increasing the amount of data that can be transmitted with a set period of time.Type: GrantFiled: August 14, 2006Date of Patent: December 1, 2009Inventors: John B. Langley, Michael Mancusi
-
Patent number: 7609712Abstract: The present invention provides such a need by utilizing a frequency offset differential pulse position modulation scheme to transmit data between computing devices within a wireless network system. The differential pulse position modulation component of the scheme enables the present invention to provide relative immunity to interference for the system. In particular, such immunity from interference is achieved by utilizing a blanking time between pulse positions, which is large enough to allow the interference between frequency offset—differential pulse position modulation pulses to subside. The frequency offset component of the scheme enables the system to utilize multiple frequency channels to enable the system to achieve higher data rates. In particular, by utilizing a time offset between the frequency channels, the blanking time can be reduced, thereby increasing the amount of data that can be transmitted with a set period of time.Type: GrantFiled: August 15, 2006Date of Patent: October 27, 2009Inventors: John B. Langley, Michael Mancusi
-
Patent number: 7564863Abstract: The present invention provides such a need by utilizing a frequency offset differential pulse position modulation scheme to transmit data between computing devices within a wireless network system. The differential pulse position modulation component of the scheme enables the present invention to provide relative immunity to interference for the system. In particular, such immunity from interference is achieved by utilizing a blanking time between pulse positions, which is large enough to allow the interference between frequency offset-differential pulse position modulation pulses to subside. The frequency offset component of the scheme enables the system to utilize multiple frequency channels to enable the system to achieve higher data rates. In particular, by utilizing a time offset between the frequency channels, the blanking time can be reduced, thereby increasing the amount of data that can be transmitted with a set period of time.Type: GrantFiled: August 14, 2006Date of Patent: July 21, 2009Inventors: John B. Langley, Michael Mancusi
-
Patent number: 7180850Abstract: The present invention provides such a need by utilizing a frequency offset differential pulse position modulation scheme to transmit data between computing devices within a wireless network system. The differential pulse position modulation component of the scheme enables the present invention to provide relative immunity to interference for the system. In particular, such immunity from interference is achieved by utilizing a blanking time between pulse positions, which is large enough to allow the interference between frequency offset-differential pulse position modulation pulses to subside. The frequency offset component of the scheme enables the system to utilize multiple frequency channels to enable the system to achieve higher data rates. In particular, by utilizing a time offset between the frequency channels, the blanking time can be reduced, thereby increasing the amount of data that can be transmitted with a set period of time.Type: GrantFiled: January 20, 2004Date of Patent: February 20, 2007Inventors: John B. Langley, Michael Mancusi
-
Patent number: 6711122Abstract: The present invention provides such a need by utilizing a frequency offset differential pulse position modulation scheme to transmit data between computing devices within a wireless network system. The differential pulse position modulation component of the scheme enables the present invention to provide relative immunity to interference for the system. In particular, such immunity from interference is achieved by utilizing a blanking time between pulse positions, which is large enough to allow the interference between frequency offset—differential pulse position modulation pulses to subside. The frequency offset component of the scheme enables the system to utilize multiple frequency channels to enable the system to achieve higher data rates. In particular, by utilizing a time offset between the frequency channels, the blanking time can be reduced, thereby increasing the amount of data that can be transmitted with a set period of time.Type: GrantFiled: February 8, 2000Date of Patent: March 23, 2004Assignee: RadioLAN, Inc.Inventors: John B. Langley, Michael Mancusi