Patents by Inventor John B Pendry

John B Pendry has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10199793
    Abstract: A method of pumping an optical resonator includes directing light generated by a pumping light at the optical resonator, exciting a propagating surface state of the optical resonator at an interface of the optical resonator, and changing a propagating frequency of the light proximate the interface, where the changed frequency corresponds to a propagation frequency of the surface state. The optical resonator includes a photonic crystal and a material, where the interface is formed between the photonic crystal and the material.
    Type: Grant
    Filed: June 30, 2017
    Date of Patent: February 5, 2019
    Assignee: Elwha LLC
    Inventors: Jeffrey A. Bowers, William D. Duncan, Roderick A. Hyde, Jordin T. Kare, Nathan Kundtz, Ruopeng Liu, Bruce M. McWilliams, John B. Pendry, Daniel A. Roberts, David Schurig, David R. Smith, Clarence T. Tegreene, Lowell L. Wood, Jr.
  • Publication number: 20170302049
    Abstract: A method of pumping an optical resonator includes directing light generated by a pumping light at the optical resonator, exciting a propagating surface state of the optical resonator at an interface of the optical resonator, and changing a propagating frequency of the light proximate the interface, where the changed frequency corresponds to a propagation frequency of the surface state. The optical resonator includes a photonic crystal and a material, where the interface is formed between the photonic crystal and the material.
    Type: Application
    Filed: June 30, 2017
    Publication date: October 19, 2017
    Applicant: Elwha LLC
    Inventors: Jeffrey A. Bowers, William D. Duncan, Roderick A. Hyde, Jordin T. Kare, Nathan Kundtz, Ruopeng Liu, Bruce M. McWilliams, John B. Pendry, Daniel A. Roberts, David Schurig, David R. Smith, Clarence T. Tegreene, Lowell L. Wood,, JR.
  • Patent number: 9698558
    Abstract: A method of pumping an optical resonator includes directing light generated by a pumping light at the optical resonator, exciting a propagating surface state of the optical resonator at an interface of the optical resonator, and changing a propagating frequency of the light proximate the interface, where the changed frequency corresponds to a propagation frequency of the surface state. The optical resonator includes a photonic crystal and a material, where the interface is formed between the photonic crystal and the material.
    Type: Grant
    Filed: June 15, 2016
    Date of Patent: July 4, 2017
    Assignee: Elwha LLC
    Inventors: Jeffrey A. Bowers, William D. Duncan, Roderick A. Hyde, Jordin T. Kare, Nathan Kundtz, Ruopeng Liu, Bruce M. McWilliams, John B. Pendry, Daniel A. Roberts, David Schurig, David R. Smith, Clarence T. Tegreene, Lowell L. Wood, Jr.
  • Publication number: 20160301181
    Abstract: A method of pumping an optical resonator includes directing light generated by a pumping light at the optical resonator, exciting a propagating surface state of the optical resonator at an interface of the optical resonator, and changing a propagating frequency of the light proximate the interface, where the changed frequency corresponds to a propagation frequency of the surface state. The optical resonator includes a photonic crystal and a material, where the interface is formed between the photonic crystal and the material.
    Type: Application
    Filed: June 15, 2016
    Publication date: October 13, 2016
    Applicant: Elwha LLC
    Inventors: Jeffrey A. Bowers, William D. Duncan, Roderick A. Hyde, Jordin T. Kare, Nathan Kundtz, Ruopeng Liu, Bruce M. McWilliams, John B. Pendry, Daniel A. Roberts, David Schurig, David R. Smith, Clarence T. Tegreene, Lowell L. Wood,, JR.
  • Patent number: 9385503
    Abstract: A method of pumping an optical resonator includes directing light generated by a pumping light at the optical resonator, exciting a propagating surface state of the optical resonator at an interface of the optical resonator, and changing a propagating frequency of the light proximate the interface, where the changed frequency corresponds to a propagation frequency of the surface state. The optical resonator includes a photonic crystal and a material, where the interface is formed between the photonic crystal and the material.
    Type: Grant
    Filed: April 10, 2015
    Date of Patent: July 5, 2016
    Assignee: Elwha LLC
    Inventors: Jeffrey A. Bowers, William D. Duncan, Roderick A. Hyde, Jordin T. Kare, Nathan Kundtz, Ruopeng Liu, Bruce M. McWilliams, John B. Pendry, Daniel A. Roberts, David Schurig, David R. Smith, Clarence T. Tegreene, Lowell L. Wood, Jr.
  • Publication number: 20150271876
    Abstract: A plant warming system includes a sensor configured to acquire temperature data representative of a temperature of a plant, a heating system including an antenna configured to direct microwaves toward the plant, and a control system configured to control operation of the heating system based on the temperature data.
    Type: Application
    Filed: March 24, 2014
    Publication date: September 24, 2015
    Inventors: Jeffrey A. Bowers, Russell J. Hannigan, Roderick A. Hyde, Jordin T. Kare, Nathan Kundtz, Nathan P. Myhrvold, John B. Pendry, David R. Smith, Clarence T. Tegreene, David B. Tuckerman, Charles Whitmer, Lowell L. Wood, JR.
  • Publication number: 20150222075
    Abstract: A method of pumping an optical resonator includes directing light generated by a pumping light at the optical resonator, exciting a propagating surface state of the optical resonator at an interface of the optical resonator, and changing a propagating frequency of the light proximate the interface, where the changed frequency corresponds to a propagation frequency of the surface state. The optical resonator includes a photonic crystal and a material, where the interface is formed between the photonic crystal and the material.
    Type: Application
    Filed: April 10, 2015
    Publication date: August 6, 2015
    Applicant: ELWHA LLC
    Inventors: Jeffrey A. Bowers, William D. Duncan, Roderick A. Hyde, Jordin T. Kare, Nathan Kundtz, Ruopeng Liu, Bruce M. McWilliams, John B. Pendry, Daniel A. Roberts, David Schurig, David R. Smith, Clarence T. Tegreene, Lowell L. Wood,, JR.
  • Patent number: 9048621
    Abstract: A method of pumping an optical resonator includes directing light generated by a pumping light at the optical resonator, exciting a propagating surface state of the optical resonator at an interface of the optical resonator, and changing a propagating frequency of the light proximate the interface, where the changed frequency corresponds to a propagation frequency of the surface state. The optical resonator includes a photonic crystal and a material, where the interface is formed between the photonic crystal and the material.
    Type: Grant
    Filed: July 12, 2013
    Date of Patent: June 2, 2015
    Assignee: ELWHA LLC
    Inventors: Jeffrey A. Bowers, William D. Duncan, Roderick A. Hyde, Jordin T. Kare, Nathan Kundtz, Ruopeng Liu, Bruce M. McWilliams, John B. Pendry, Daniel A. Roberts, David Schurig, David R. Smith, Clarence T. Tegreene, Lowell L. Wood, Jr.
  • Publication number: 20150016483
    Abstract: A method of pumping an optical resonator includes directing light generated by a pumping light at the optical resonator, exciting a propagating surface state of the optical resonator at an interface of the optical resonator, and changing a propagating frequency of the light proximate the interface, where the changed frequency corresponds to a propagation frequency of the surface state. The optical resonator includes a photonic crystal and a material, where the interface is formed between the photonic crystal and the material.
    Type: Application
    Filed: July 12, 2013
    Publication date: January 15, 2015
    Inventors: Jeffrey A. Bowers, William D. Duncan, Roderick A. Hyde, Jordin T. Kare, Nathan Kundtz, Ruopeng Liu, Bruce M. McWilliams, John B. Pendry, Daniel A. Roberts, David Schurig, David R. Smith, Clarence T. Tegreene, Lowell L. Wood,, JR.
  • Publication number: 20030224817
    Abstract: A mobile communication apparatus such as a mobile phone has an antenna which includes magnetically permeable material surrounded by a coil connected to a radio frequency source and/or receiver. Unlike the normal dipole antenna of a mobile phone, the magnetic antenna results in reduced absorption of the evanescent, non-radiative field of the antenna in the user.
    Type: Application
    Filed: March 26, 2003
    Publication date: December 4, 2003
    Inventors: William J. Stewart, John B. Pendry
  • Patent number: 6608811
    Abstract: A structure which exhibits magnetic properties when it receives electromagnetic radiation is formed from an array of capacitive elements each of which is smaller, and preferably much smaller, than the wavelength of the radiation. Each capacitive element has a low resistance conducting path associated with it and is such that a magnetic component of the received electromagnetic radiation induces an electrical current to flow around the path and through the associated element. The creation of internal magnetic fields generated by the flow of the induced electrical current gives rise to the structure's magnetic properties.
    Type: Grant
    Filed: November 3, 2000
    Date of Patent: August 19, 2003
    Assignee: Marconi Caswell Limited
    Inventors: Anthony J Holden, Michael C Wiltshire, David J Robbins, William J Stewart, John B Pendry
  • Patent number: 6512483
    Abstract: The performance of a microwave antenna is improved by incorporating a fine wire dielectric material which has a dielectric constant ∈ of less than unity at microwave frequencies. The effect of the dielectric material is to refract microwaves so that the antenna appears to have a larger aperture than that of its physical size. Furthermore, by selecting the transmission cut off frequency of the dielectric material, two antenna elements which are intended to operate within different frequency bands can be mounted one behind the other.
    Type: Grant
    Filed: November 3, 2000
    Date of Patent: January 28, 2003
    Assignee: Marconi Caswell Limited
    Inventors: Anthony J Holden, Michael C Wiltshire, David J Robbins, William J Stewart, John B Pendry