Patents by Inventor John B. Stetson

John B. Stetson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10725124
    Abstract: A system for magnetic detection includes a nitrogen vacancy (NV) diamond material comprising a plurality of NV centers, a radio frequency (RF) excitation source configured to provide RF excitation to the NV diamond material, an optical excitation source configured to provide optical excitation to the NV diamond material, an optical detector configured to receive an optical signal emitted by the NV diamond material, and a controller. The optical signal is based on hyperfine states of the NV diamond material. The controller is configured to detect a gradient of the optical signal based on the hyperfine states emitted by the NV diamond material.
    Type: Grant
    Filed: March 5, 2018
    Date of Patent: July 28, 2020
    Assignee: LOCKHEED MARTIN CORPORATION
    Inventors: Brian P. Boesch, Gregory Scott Bruce, Jeff D. Cammerata, David Nelson Coar, Laird Nicholas Egan, Bryan Neal Fisk, Wilbur Lew, Arul Manickam, Stephen Michael Sekelsky, John B. Stetson, Jr., Peter G. Kaup, Julie Lynne Miller, Jon C. Russo, Emanuel Solomon Stockman, Thomas J. Meyer, James Michael Krause, James P. Mabry, Elton Pepa
  • Patent number: 10677953
    Abstract: A system for magnetic detection includes a magneto-optical defect center material including at least one magneto-optical defect center that emits an optical signal when excited by an excitation light; a radio frequency (RF) exciter system configured to provide RF excitation to the magneto-optical defect center material; an optical light source configured to direct the excitation light to the magneto-optical defect center material; and an optical detector configured to receive the optical signal emitted by the magneto-optical defect center material.
    Type: Grant
    Filed: May 31, 2017
    Date of Patent: June 9, 2020
    Assignee: LOCKHEED MARTIN CORPORATION
    Inventors: John B. Stetson, Arul Manickam, Peter G. Kaup, Gregory Scott Bruce, Wilbur Lew, Joseph W. Hahn, Nicholas Mauriello Luzod, Kenneth Michael Jackson, Jacob Louis Swett, Peter V. Bedworth, Steven W. Sinton, Duc Huynh, Michael John Dimario, Jay T. Hansen, Andrew Raymond Mandeville, Bryan Neal Fisk, Joseph A. Villani, Jon C. Russo, David Nelson Coar, Julie Lynne Miller, Anjaney Pramod Kottapalli, Gary Edward Montgomery, Margaret Miller Shaw, Stephen Sekelsky, James Michael Krause, Thomas J. Meyer
  • Patent number: 10653824
    Abstract: Various systems and methods relating to two-dimensional materials such as graphene. A membrane include a cross-linked graphene platelet polymer that includes a plurality of cross-linked graphene platelets. The cross-linked graphene platelets include a graphene portion and a cross-linking portion. The cross-linking portion contains a 4 to 10 atom link. The cross-linked graphene platelet polymer is produced by reaction of an epoxide functionalized graphene platelet and a (meth)acrylate or (meth)acrylamide functionalized cross-linker.
    Type: Grant
    Filed: April 14, 2016
    Date of Patent: May 19, 2020
    Assignee: Lockheed Martin Corporation
    Inventors: Peter V. Bedworth, Steven Edward Bullock, Sarah M. Simon, Steven W. Sinton, John B. Stetson, Jr., Jacob L. Swett, Scott E. Heise
  • Patent number: 10571530
    Abstract: A system includes a plurality of magnetometers that are each configured to generate a vector measurement of a magnetic field. The system also includes a central processing unit that is communicatively coupled to each of the magnetometers. The central processing unit is configured to receive from each of the plurality of magnetometers the respective vector measurement of the magnetic field. The central processing unit is further configured to compare each of the vector measurements to determine differences in the vector measurements and to determine, based on the differences in the vector measurements, that a magnetic object is near the plurality of magnetometers.
    Type: Grant
    Filed: March 1, 2017
    Date of Patent: February 25, 2020
    Assignee: LOCKHEED MARTIN CORPORATION
    Inventors: Jay Hansen, John B. Stetson, Michael DiMario
  • Patent number: 10527746
    Abstract: A system includes a plurality of magnetometers that are each configured to generate a vector measurement of a magnetic field. The system also includes a central processing unit that is communicatively coupled to each of the magnetometers. The central processing unit is configured to receive from each of the plurality of magnetometers the respective vector measurement of the magnetic field. The central processing unit is further configured to compare each of the vector measurements to determine differences in the vector measurements and to determine, based on the differences in the vector measurements, that a magnetic object is near the plurality of magnetometers.
    Type: Grant
    Filed: February 27, 2017
    Date of Patent: January 7, 2020
    Assignee: LOCKHEED MARTIN CORPORATION
    Inventors: Jay Hansen, John B. Stetson, Jr., Michael DiMario
  • Patent number: 10459041
    Abstract: A system for magnetic detection includes a housing including a top plate, bottom plate, side plate, and main plate provided between the side plate and the bottom plate; a magneto-optical defect center material including at least one magneto-optical defect center that emits an optical signal when excited by an excitation light; a radio frequency (RF) exciter system configured to provide RF excitation to the magneto-optical defect center material; an optical light source configured to direct the excitation light to the magneto-optical defect center material; and an optical detector configured to receive the optical signal emitted by the magneto-optical defect center material. The elements of the system are mounted to the main plate and capable of being unattached and remounted to the main plate to change at least one of a location or an angle of incidence of the excitation light on the magneto-optical defect center material.
    Type: Grant
    Filed: March 24, 2017
    Date of Patent: October 29, 2019
    Assignee: LOCKHEED MARTIN CORPORATION
    Inventors: Joseph W. Hahn, Kenneth Michael Jackson, Nicholas M. Luzod, Gregory Scott Bruce, Wilbur Lew, John B. Stetson, Jr., Duc Huynh, Andrew Raymond Mandeville, Arul Manickam, Peter G. Kaup
  • Patent number: 10371765
    Abstract: System and methods for determining an angle and/or geolocation of a dipole magnetic source relative to one or more DNV sensors. The system may include one or more DNV sensors, and a controller. The controller is configured to activate the DNV sensors, receive a set of vector measurements from the DNV sensors, and determine an angle of a magnetic source relative to the one or more DNV sensors based on the received set of vector measurements from the DNV sensors.
    Type: Grant
    Filed: February 20, 2017
    Date of Patent: August 6, 2019
    Assignee: LOCKHEED MARTIN CORPORATION
    Inventors: Peter G. Kaup, Arul Manickam, John B. Stetson
  • Patent number: 10241158
    Abstract: A system for determining an orientation of a nitrogen vacancy (NV) diamond material is disclosed. The system includes the NV diamond material having a plurality of NV centers, a magnetic field generator that generates a magnetic field, a radio frequency (RF) excitation source that provides RF excitation, an optical excitation source that provides optical excitation, an optical detector that receives an optical signal emitted by the NV diamond material, and a controller. The controller controls the magnetic field generator to generate a control magnetic field and controls the magnetic field generator to successively generate calibration magnetic fields. The controller successively receives light detection signals from the optical detector, stores measurement values based on the successively received light detection signals, and calculates an orientation of the NV diamond material based on the stored measurement values.
    Type: Grant
    Filed: January 21, 2016
    Date of Patent: March 26, 2019
    Assignee: LOCKHEED MARTIN CORPORATION
    Inventors: Arul Manickam, Peter G. Kaup, John B. Stetson, Jr.
  • Patent number: 10168393
    Abstract: A method for providing a miniature vector magnetometer includes embedding a micron-sized diamond nitrogen-vacancy (DNV) crystal into a bonding material. The bonding material including the embedded micron-sized DNV crystal is cured to form a micro-DNV sensor. A micro-DNV assembly is formed by integrating the micro-DNV sensor with a micro-radio-frequency (RF) source, a micron-sized light source, a reference bias magnet, and one or more micro-photo detectors. The micro-DNV assembly is operable to perform vector magnetometry when positioned in an external magnetic field.
    Type: Grant
    Filed: September 25, 2015
    Date of Patent: January 1, 2019
    Assignee: LOCKHEED MARTIN CORPORATION
    Inventors: John B. Stetson, Jr., Michael J. Hiltabidle, Peter G. Kaup, Arul Manickam, Sarah Simon
  • Publication number: 20180348393
    Abstract: A system includes a plurality of magnetometers that are each configured to generate a vector measurement of a magnetic field. The system also includes a central processing unit that is communicatively coupled to each of the magnetometers. The central processing unit is configured to receive from each of the plurality of magnetometers the respective vector measurement of the magnetic field. The central processing unit is further configured to compare each of the vector measurements to determine differences in the vector measurements and to determine, based on the differences in the vector measurements, that a magnetic object is near the plurality of magnetometers.
    Type: Application
    Filed: February 27, 2017
    Publication date: December 6, 2018
    Applicant: Lockheed Martin Corporation
    Inventors: Jay Hansen, John B. Stetson, JR., Michael DiMario
  • Patent number: 10120039
    Abstract: A system for magnetic detection includes a nitrogen vacancy (NV) diamond material comprising a plurality of NV centers, a magnetic field generator that generates a magnetic field that is applied to the NV diamond material, a radio frequency (RF) excitation source that provides RF excitation to the NV diamond material, an optical excitation source that provides optical excitation to the NV diamond material, an optical detector that receives an optical signal emitted by the NV diamond material, and a controller. The controller is configured to compute a total incident magnetic field at the NV diamond material based on the optical signal emitted by the NV diamond material, and drive the magnetic field generator to generate a compensatory magnetic field, the generated compensatory magnetic field being set to offset a shift in the optical signal emitted by the NV diamond material caused by an external magnetic field.
    Type: Grant
    Filed: January 21, 2016
    Date of Patent: November 6, 2018
    Assignee: LOCKHEED MARTIN CORPORATION
    Inventors: John B. Stetson, Jr., Jeff D. Cammerata
  • Patent number: 10088452
    Abstract: A method includes passing a magnetometer along a length of a material. The method also includes measuring, via the magnetometer, a first magnetic field magnitude along a first portion of the length of the material and measuring, via the magnetometer, a second magnetic field magnitude along a second portion of the length of material. The method further includes determining that the material includes a defect along the second portion of the length of material by determining that the first magnetic field magnitude is different than the second magnetic field magnitude.
    Type: Grant
    Filed: January 21, 2016
    Date of Patent: October 2, 2018
    Assignee: LOCKHEED MARTIN CORPORATION
    Inventors: Joseph A. Villani, Jr., John B. Stetson, Jr.
  • Publication number: 20180275212
    Abstract: A system for magnetic detection includes a housing including a top plate, bottom plate, side plate, and main plate provided between the side plate and the bottom plate; a magneto-optical defect center material including at least one magneto-optical defect center that emits an optical signal when excited by an excitation light; a radio frequency (RF) exciter system configured to provide RF excitation to the magneto-optical defect center material; an optical light source configured to direct the excitation light to the magneto-optical defect center material; and an optical detector configured to receive the optical signal emitted by the magneto-optical defect center material.
    Type: Application
    Filed: March 24, 2017
    Publication date: September 27, 2018
    Applicant: Lockheed Martin Corporation
    Inventors: Joseph W. Hahn, Kenneth Michael Jackson, Nicholas M. Luzod, Gregory Scott Bruce, Wilbur Lew, John B. Stetson, JR., Duc Huynh, Andrew Raymond Mandeville, Arul Manickam, Peter G. Kaup
  • Publication number: 20180196111
    Abstract: A system for magnetic detection includes a nitrogen vacancy (NV) diamond material comprising a plurality of NV centers, a radio frequency (RF) excitation source configured to provide RF excitation to the NV diamond material, an optical excitation source configured to provide optical excitation to the NV diamond material, an optical detector configured to receive an optical signal emitted by the NV diamond material, and a controller. The optical signal is based on hyperfine states of the NV diamond material. The controller is configured to detect a gradient of the optical signal based on the hyperfine states emitted by the NV diamond material.
    Type: Application
    Filed: March 5, 2018
    Publication date: July 12, 2018
    Inventors: Brian P. BOESCH, Gregory Scott BRUCE, Jeff D. CAMMERATA, David Nelson COAR, Laird Nicholas EGAN, Bryan Neal FISK, Wilbur LEW, Arul MANICKAM, Stephen Michael SEKELSKY, John B. STETSON, JR., Peter G. KAUP, Julie Lynne MILLER, Jon C. RUSSO, Emanuel Solomon STOCKMAN, Thomas J. MEYER, James Michael KRAUSE, James P. MABRY, Elton PEPA
  • Patent number: 10015844
    Abstract: A condensation inhibiting device includes a condensation inhibiting unit for inhibiting condensation on a first surface, and a thermoelectric generator which powers the condensation inhibiting unit.
    Type: Grant
    Filed: June 30, 2015
    Date of Patent: July 3, 2018
    Assignee: Lockheed Martin Corporation
    Inventors: Steven E. Bullock, Sarah M. Simon, John B. Stetson, Jr.
  • Patent number: 10005038
    Abstract: Perforated graphene and other perforated two-dimensional materials can be used in hemodialysis membranes and blood filtration membranes for selective removal of components from blood in vivo and ex vivo. The membranes are useful in hemodialysis and hemofiltration techniques to provide improved patient care. Hemodialysis systems can include a hemodialysis membrane formed from perforated graphene or another perforated two-dimensional material disposed upon a porous support structure. Hemofiltration systems can include one or more and preferably two or more blood filtration membrane formed from perforated graphene or another perforated two-dimensional material disposed upon a porous support structure. Methods for performing hemodialysis can involve exposing blood from a patient to a hemodialysis membrane formed from a perforated two-dimensional material. Ex vivo dialysis techniques can be performed similarly.
    Type: Grant
    Filed: September 2, 2015
    Date of Patent: June 26, 2018
    Assignee: Lockheed Martin Corporation
    Inventors: John B. Stetson, Jr., Sarah Simon, Jacob L. Swett
  • Patent number: 9910105
    Abstract: A system for magnetic detection includes a nitrogen vacancy (NV) diamond material comprising a plurality of NV centers, a radio frequency (RF) excitation source configured to provide RF excitation to the NV diamond material, an optical excitation source configured to provide optical excitation to the NV diamond material, an optical detector configured to receive an optical signal emitted by the NV diamond material, and a controller. The optical signal is based on hyperfine states of the NV diamond material. The controller is configured to detect a gradient of the optical signal based on the hyperfine states emitted by the NV diamond material.
    Type: Grant
    Filed: June 10, 2016
    Date of Patent: March 6, 2018
    Assignee: LOCKHEED MARTIN CORPORATION
    Inventors: Brian P. Boesch, Gregory Scott Bruce, Jeff D. Cammerata, David Nelson Coar, Laird Nicholas Egan, Bryan Neal Fisk, Wilbur Lew, Arul Manickam, Stephen Michael Sekelsky, John B. Stetson, Jr., Peter G. Kaup, Julie Lynne Miller, Jon C. Russo, Emanuel Solomon Stockman, Thomas J. Meyer, James Michael Krause, James P. Mabry, Elton Pepa
  • Patent number: 9910104
    Abstract: A system for magnetic detection includes a nitrogen vacancy (NV) diamond material comprising a plurality of NV centers, a radio frequency (RF) excitation source configured to provide RF excitation to the NV diamond material, an optical excitation source configured to provide optical excitation to the NV diamond material, an optical detector configured to receive an optical signal emitted by the NV diamond material, and a controller. The optical signal is based on hyperfine states of the NV diamond material. The controller is configured to detect a gradient of the optical signal based on the hyperfine states emitted by the NV diamond material.
    Type: Grant
    Filed: January 21, 2016
    Date of Patent: March 6, 2018
    Assignee: LOCKHEED MARTIN CORPORATION
    Inventors: Brian P. Boesch, Gregory Scott Bruce, Jeff D. Cammerata, David Nelson Coar, Laird Nicholas Egan, Bryan Neal Fisk, Wilbur Lew, Arul Manickam, Stephen Michael Sekelsky, John B. Stetson, Jr., Peter G. Kaup, Julie Lynne Miller, Jon C. Russo, Emanuel Solomon Stockman
  • Publication number: 20180011152
    Abstract: System and methods for determining an angle and/or geolocation of a dipole magnetic source relative to one or more DNV sensors. The system may include one or more DNV sensors, and a controller. The controller is configured to activate the DNV sensors, receive a set of vector measurements from the DNV sensors, and determine an angle of a magnetic source relative to the one or more DNV sensors based on the received set of vector measurements from the DNV sensors.
    Type: Application
    Filed: February 20, 2017
    Publication date: January 11, 2018
    Applicant: Lockheed Martin Corporation
    Inventors: Peter G. KAUP, Arul MANICKAM, John B. STETSON
  • Patent number: 9833748
    Abstract: A fluid deionizer includes at least one graphene sheet perforated with apertures dimensioned to allow a flow of fluid and to disallow at least one particular type of ion contained in the flow of fluid. A purge valve is placed in an open position so as to collect the at least one particular type of ion disallowed by the graphene sheet so as to clean off the at least one graphene sheet. Another embodiment provides a deionizer with graphene sheets in cylindrical form. A separation apparatus is also provided in a cross-flow arrangement where a pressurized source directs a medium along a path substantially parallel to at least one sheet of graphene from an inlet to an outlet. The medium flows through the plural perforated apertures while a remaining portion of the medium and the disallowed components in the medium flow out the outlet.
    Type: Grant
    Filed: October 24, 2016
    Date of Patent: December 5, 2017
    Assignee: Lockheed Martin Corporation
    Inventors: John B. Stetson, Jr., Jonathan Mercurio, Alan Rosenwinkel, Peter V. Bedworth, Shawn P. Fleming, Aaron L. Westman