Patents by Inventor John Bardsley
John Bardsley has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20220250315Abstract: A system and method that enables 3D printing of ballistics gel and other low melting point materials.Type: ApplicationFiled: July 23, 2020Publication date: August 11, 2022Applicant: BOARD OF TRUSTEES OF THE UNIVERSITY OF ARKANSASInventors: Wenchao Zhou, Edidiong Nseowo Udofia, Brian Luttrell, Robert Jacobson, Sameer Kulkarni, Salman Khalid, John Bardsley
-
Publication number: 20210388398Abstract: The present invention is directed to cellulytic host cells. The host cells of the invention expressing heterologous cellulases and are able to produce ethanol from cellulose. According to the invention, host cells expressing a combination of heterologous cellulases can be used to produce ethanol from cellulose. In addition, multiple host cells expressing different heterologous cellulases can be co-cultured together and used to produce ethanol from cellulose. Furthermore, the invention demonstrates for the first time the ability of Kluyveromyces to produce ethanol from cellulose. The yeast strains and co-cultures of yeast strains of the invention can be used to produce ethanol on their own, or can also be used in combination with externally added cellulases to increase the efficiency of saccharification and fermentation processes.Type: ApplicationFiled: December 22, 2020Publication date: December 16, 2021Inventors: John McBride, Elena Brevnova, Mark Mellon, Allan Froehlich, Kristen Deleault, Vineet Rajgarhia, Riaan Den Haan, Merja Penttila, Marja Ilmen, Matti Siika-Aho, Jaana Uusitalo, Emily A. Stonehouse, Alan Gilbert, Haowen Xu, Deidre Willies, John Bardsley, Anu Koivula, Sanni Voutilainen
-
Publication number: 20180258449Abstract: The present invention is directed to cellulytic host cells. The host cells of the invention expressing heterologous cellulases and are able to produce ethanol from cellulose. According to the invention, host cells expressing a combination of heterologous cellulases can be used to produce ethanol from cellulose. In addition, multiple host cells expressing different heterologous cellulases can be co-cultured together and used to produce ethanol from cellulose. Furthermore, the invention demonstrates for the first time the ability of Kluyveromyces to produce ethanol from cellulose. The yeast strains and co-cultures of yeast strains of the invention can be used to produce ethanol on their own, or can also be used in combination with externally added cellulases to increase the efficiency of saccharification and fermentation processes.Type: ApplicationFiled: May 21, 2018Publication date: September 13, 2018Inventors: John McBride, Elena Brevnova, Mark Mellon, Allan Froehlich, Kristen Deleault, Vineet Rajgarhia, Riaan Den Haan, Merja Penttila, Marja Ilmen, Matti Siika-Aho, Jaana Uusitalo, Emily A. Stonehouse, Alan Gilbert, Haowen Xu, Deidre Willies, John Bardsley, Anu Koivula, Sanni Voutilainen
-
Patent number: 10066217Abstract: Mutant thermophilic organisms that consume a variety of biomass derived substrates are disclosed herein. Strains of Thermoanaerobacterium saccharolyticum with acetate kinase and phosphotransacetylase expression eliminated are disclosed herein. Further, strain ALK1 has been engineered by site directed homologous recombination to knockout both acetic acid and lactic acid production. Continuous culture involving a substrate concentration challenge lead to evolution of ALK1, and formation of a more robust strain designated ALK2. The organisms may be utilized for example in thermophilic SSF and SSCF reactions performed at temperatures that are optimal for cellulase activity to produce near theoretical ethanol yields without expressing pyruvate decarboxylase.Type: GrantFiled: May 1, 2007Date of Patent: September 4, 2018Assignee: THE TRUSTEES OF DARTMOUTH COLLEGEInventors: Arthur Josephus Shaw, IV, Sunil G. Desai, Lee R. Lynd, Kara Podkaminer, John Bardsley, David Anthony Hogsett
-
Patent number: 9988652Abstract: The present invention is directed to cellulytic host cells. The host cells of the invention expressing heterologous cellulases and are able to produce ethanol from cellulose. According to the invention, host cells expressing a combination of heterologous cellulases can be used to produce ethanol from cellulose. In addition, multiple host cells expressing different heterologous cellulases can be co-cultured together and used to produce ethanol from cellulose. Furthermore, the invention demonstrates for the first time the ability of Kluveryomyces to produce ethanol from cellulose. The yeast strains and co-cultures of yeast strains of the invention can be used to produce ethanol on their own, or can also be used in combination with externally added cellulases to increase the efficiency of saccharification and fermentation processes.Type: GrantFiled: July 1, 2015Date of Patent: June 5, 2018Assignees: Lallemand Hungary Liquidity Management LLC, Stellenbosch UniversityInventors: John McBride, Elena Brevnova, Mark Mellon, Allan Froehlich, Kristen Deleault, Vineet Rajgarhia, Riaan Den Haan, Merja Penttila, Marja Ilmen, Matti Siika-Aho, Jaana Uusitalo, Emily A. Stonehouse, Alan Gilbert, Haowen Xu, Deidre Willes, John Bardsley, Anu Koivula, Sanni Voutilainen
-
Publication number: 20160010117Abstract: The present invention is directed to cellulytic host cells. The host cells of the invention expressing heterologous cellulases and are able to produce ethanol from cellulose. According to the invention, host cells expressing a combination of heterologous cellulases can be used to produce ethanol from cellulose. In addition, multiple host cells expressing different heterlogous cellulases can be co-cultured together and used to produce ethanol from cellulose. Furthermore, the invention demonstrates for the first time the ability of Kluveryomyces to produce ethanol from cellulose. The yeast strains and co-cultures of yeast strains of the invention can be used to produce ethanol on their own, or can also be used in combination with externally added cellulases to increase the efficiency of saccharification and fermentation processes.Type: ApplicationFiled: July 1, 2015Publication date: January 14, 2016Inventors: John McBride, Elena Brevnova, Mark Mellon, Allan Froehlich, Kristen Deleault, Vineet Rajgarhia, Riaan Den Haan, Merja Penttila, Marja Ilmen, Matti Siika-Aho, Jaana Uusitalo, Emily A. Stonehouse, Alan Gilbert, Haowen Xu, Deidre Willes, John Bardsley, Anu Koivula, Sanni Voutilainen
-
Patent number: 9102955Abstract: Host cells, comprising Kluveryomyces expressing heterologous cellulases produce ethanol from cellulose In addition, multiple host cells expressing different heterlogous cellulases can be co-cultured together and used to produce ethanol from cellulose The recombinant yeast strains and co-cultures of the yeast strains can be used to produce ethanol on their own, or can also be used in combination with externally added cellulases to increase the efficiency of sacchanfication and fermentation processes.Type: GrantFiled: November 23, 2009Date of Patent: August 11, 2015Assignee: Lallemand Hungary Liquidity Management LLCInventors: John McBride, Elena Brevnova, Mark Mellon, Allan Froehlich, Kristen Deleault, Vineet Rajgarhia, Riaan Den Haan, Merja Penttila, Marja Ilmen, Matti Siika-Aho, Jaana Uusitalo, Emily A. Stonehouse, Alan Gilbert, Haowen Xu, Deidre Willes, John Bardsley, Anu Koivula, Sanni Voutilainen
-
Patent number: 8765428Abstract: The present invention is directed to a process for biologically converting carbohydrates from lignocellulosic biomass comprising the steps of: suspending lignocellulosic biomass in a flow-through reactor, passing a reaction solution into the reactor, wherein the solution is absorbed into the biomass substrate and at least a portion of the solution migrates through said biomass substrate to a liquid reservoir, recirculating the reaction solution in the liquid reservoir at least once to be absorbed into and migrate through the biomass substrate again. The biological converting of the may involve hydrolyzing cellulose, hemicellulose, or a combination thereof to form oligosaccharides, monomelic sugars, or a combination thereof; fermenting oligosaccharides, monomelic sugars, or a combination thereof to produce ethanol, or a combination thereof. The process can further comprise removing the reaction solution and processing the solution to separate the ethanol produced from non-fermented solids.Type: GrantFiled: July 17, 2009Date of Patent: July 1, 2014Assignee: Mascoma CorporationInventors: Christopher D. Herring, Chaogang Liu, John Bardsley
-
Publication number: 20120129229Abstract: Host cells, comprising Kluveryomyces expressing heterologous cellulases produce ethanol from cellulose In addition, multiple host cells expressing different heterlogous cellulases can be co-cultured together and used to produce ethanol from cellulose The recombinant yeast strains and co-cultures of the yeast strains can be used to produce ethanol on their own, or can also be used in combination with externally added cellulases to increase the efficiency of sacchanfication and fermentation processesType: ApplicationFiled: November 23, 2009Publication date: May 24, 2012Inventors: John McBride, Elena Brevnova, Mark Mellon, Allan Froehlich, Kristen Deleault, Vineet Rajgarhia, Riaan Den Haan, Merja Penttila, Marja Ilmen, Matti Siika-Aho, Jaana Uusitalo, Emily A. Stonehouse, Alan Gilbert, Haowen Xu, Deidre Willes, John Bardsley, Anu Koivula, Sanni Voutilainen
-
Publication number: 20120077239Abstract: Mutant thermophilic organisms that consume a variety of biomass derived substrates are disclosed herein. Strains of Thermoanaerobacterium saccharolyticum with acetate kinase and phosphotransacetylase expression eliminated are disclosed herein. Further, strain ALK1 has been engineered by site directed homologous recombination to knockout both acetic acid and lactic acid production. Continuous culture involving a substrate concentration challenge lead to evolution of ALK1, and formation of a more robust strain designated ALK2. The organisms may be utilized for example in thermophilic SSF and SSCF reactions performed at temperatures that are optimal for cellulase activity to produce near theoretical ethanol yields without expressing pyruvate decarboxylase.Type: ApplicationFiled: May 1, 2007Publication date: March 29, 2012Inventors: Arthur Josephus Shaw, IV, Sunil G. Desai, Lee R. Lynd, Mikhail V. Tyurin, Kara Podkaminer, John Bardsley, David Anthony Hogsett
-
Publication number: 20120028325Abstract: The present invention is directed to a process for biologically converting carbohydrates from lignocellulosic biomass comprising the steps of: suspending lignocellulosic biomass in a flow-through reactor, passing a reaction solution into the reactor, wherein the solution is absorbed into the biomass substrate and at least a portion of the solution migrates through said biomass substrate to a liquid reservoir, recirculating the reaction solution in the liquid reservoir at least once to be absorbed into and migrate through the biomass substrate again. The biological converting of the may involve hydrolyzing cellulose, hemicellulose, or a combination thereof to form oligosaccharides, monomelic sugars, or a combination thereof; fermenting oligosaccharides, monomelic sugars, or a combination thereof to produce ethanol, or a combination thereof. The process can further comprise removing the reaction solution and processing the solution to separate the ethanol produced from non-fermented solids.Type: ApplicationFiled: July 17, 2009Publication date: February 2, 2012Inventors: Christopher D. Herring, Chaogang Liu, John Bardsley
-
Publication number: 20110171709Abstract: The present invention is directed to a process of producing ethanol from lignocellulosic biomass, which comprises pre-treating a lignocellulosic feedstock to produce a reactive carbohydrate mixture; adding activated carbon in free form; converting said reactive carbohydrate mixture to form a beer; separating solids from said carbohydrate mixture or said beer or both, wherein said activated carbon is separated along with the solids in said mixture, said beer or both; and drying said solids. The invention is also directed to the production of a dried solid fuel to be combusted during said process.Type: ApplicationFiled: October 29, 2008Publication date: July 14, 2011Inventor: John Bardsley
-
Publication number: 20090221049Abstract: Mutant thermophilic organisms that consume a variety of biomass derived substrates are disclosed herein. Strains of Thermoanaerobacterium saccharolyticum with acetate kinase and phosphotransacetylase expression eliminated are disclosed herein. Further, strain ALK1 has been engineered by site directed homologous recombination to knockout both acetic acid and lactic acid production. Continuous culture involving a substrate concentration challenge lead to evolution of ALK1, and formation of a more robust strain designated ALK2. The organisms may be utilized for example in thermophilic SSF and SSCF reactions performed at temperatures that are optimal for cellulase activity to produce near theoretical ethanol yields without expressing pyruvate decarboxylase.Type: ApplicationFiled: May 1, 2007Publication date: September 3, 2009Inventors: Arthur Josephus Shaw, IV, Sunil G. Desai, Lee R. Lynd, Mikhail V. Tyurin, Kara Podkaminer, John Bardsley, David Anthony Hogsett
-
Publication number: 20040223417Abstract: A device for the storage and playback of audio signals originating from at least one portable medium includes a player for reading audio information from a portable medium having a plurality of audio tracks. The player transmits an audio output signal corresponding to a selected audio track. A storage device operatively connects to the player for receiving the output signal and storing the plurality of audio tracks. The device further includes a user interface control panel. A controller is adapted to receive user input from the control panel regarding desired playback of a selected track and records the playback information of the selected track in memory to prioritize the tracks relative to one another. The controller is further adapted to receive user input to control the player and the storage device to play at least portions of the stored plurality of audio tracks such that playing of the tracks is dependant on the playback information.Type: ApplicationFiled: May 6, 2003Publication date: November 11, 2004Inventors: David John Bardsley, Jeffery Allan Sparks
-
Patent number: 5761072Abstract: A microprocessor samples the net effective current from a battery several times a second. A fast average current I.sub.f is calculated using an IIR filter on the net average current. A slow average current I is calculated by integrating the net average current over time with respect to time. An Ampere Hour Capacity is calculated by the use of the Peukert equation, which is split into two terms. A first capacity term is calculated using the fast average current I.sub.f and a slow capacity term is calculated using the slow average current I. The slow capacity term is then multiplied by a weighting constant C.sub.2 and summed with the fast capacity term which is multiplied by (1-C.sub.2).Type: GrantFiled: November 8, 1995Date of Patent: June 2, 1998Assignee: Ford Global Technologies, Inc.Inventors: David John Bardsley, Jr., Jing Song