Patents by Inventor John Brian McDermott

John Brian McDermott has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11703266
    Abstract: A cooling system and a related method is presented. The cooling system includes a reservoir configured to selectively supply a cooling fluid; a circulation loop fluidly coupled to the reservoir, and configured to circulate the cooling fluid to and from the reservoir, and a heat exchanger thermally coupled to the circulation loop and configured to exchange heat with the cooling fluid. The reservoir includes a refrigerant and an anti-freeze additive. The anti-freeze additive is characterized by a lower critical solution temperature (LCST) such that when an operating temperature of the reservoir is greater than the LCST, the reservoir is configured to supply a cooling fluid including the refrigerant to the circulation loop; and when the operating temperature of the reservoir is lower than the LCST, the reservoir is configured to supply a cooling fluid including the refrigerant and the anti-freeze additive to the circulation loop.
    Type: Grant
    Filed: May 11, 2017
    Date of Patent: July 18, 2023
    Assignee: General Electric Company
    Inventors: Ching-Jen Tang, Peter John Bonitatibus, Jr., John Brian McDermott
  • Patent number: 11513111
    Abstract: Described herein are systems and methods for evaluating and mitigating the wax risks of a given hydrocarbon composition such as crude oil. The disclosed systems and methods enable rapid and ready prediction of wax risks using algorithms based on a small sample of the hydrocarbon composition. The wax risks are predicted using predictive models developed from machine learning. The disclosed systems and methods include mitigation strategies for wax risks that can include chemical additives, operation changes, and/or hydrocarbon blend.
    Type: Grant
    Filed: April 10, 2017
    Date of Patent: November 29, 2022
    Assignee: BL Technologies, Inc.
    Inventors: Nimeshkumar Kantilal Patel, Hitesh Ghanshyam Bagaria, Guoliang Wang, Xiaoan Xie, Xiao Zhang, Yun Peng, Wenqing Peng, Sheng Zheng, John Brian McDermott, Peter Larry Perez Diaz
  • Publication number: 20200208899
    Abstract: A cooling system and a related method is presented. The cooling system includes a reservoir configured to selectively supply a cooling fluid; a circulation loop fluidly coupled to the reservoir, and configured to circulate the cooling fluid to and from the reservoir, and a heat exchanger thermally coupled to the circulation loop and configured to exchange heat with the cooling fluid. The reservoir includes a refrigerant and an anti-freeze additive. The anti-freeze additive is characterized by a lower critical solution temperature (LCST) such that when an operating temperature of the reservoir is greater than the LCST, the reservoir is configured to supply a cooling fluid including the refrigerant to the circulation loop; and when the operating temperature of the reservoir is lower than the LCST, the reservoir is configured to supply a cooling fluid including the refrigerant and the anti-freeze additive to the circulation loop.
    Type: Application
    Filed: May 11, 2017
    Publication date: July 2, 2020
    Inventors: Ching-Jen TANG, Peter John BONITATIBUS, JR., John Brian MCDERMOTT
  • Publication number: 20200033317
    Abstract: Described herein are systems and methods for evaluating and mitigating the wax risks of a given hydrocarbon composition such as crude oil. The disclosed systems and methods enable rapid and ready prediction of wax risks using algorithms based on a small sample of the hydrocarbon composition. The wax risks are predicted using predictive models developed from machine learning. The disclosed systems and methods include mitigation strategies for wax risks that can include chemical additives, operation changes, and/or hydrocarbon blend.
    Type: Application
    Filed: April 10, 2017
    Publication date: January 30, 2020
    Inventors: Nimeshkumar Kantilal PATEL, Hitesh Ghanshyam BAGARIA, Guoliang WANG, Xiaoan XIE, Xiao ZHANG, Yun PENG, Wenqing PENG, Sheng ZHENG, John Brian MCDERMOTT, Peter Larry PEREZ DIAZ
  • Patent number: 10465565
    Abstract: A CO2 energy storage system includes a storage tank that stores a CO2 slurry, including dry ice and liquid CO2, at CO2 triple point temperature and pressure conditions. The storage system also includes a first pump coupled in flow communication with the storage tank. The first pump is configured to receive the CO2 slurry from the storage tank and to increase a pressure of the CO2 slurry to a pressure above the CO2 triple point pressure. The energy storage system further includes a contactor coupled in flow communication with the first pump. The contactor is configured to receive the high pressure CO2 slurry from the pump and to receive a first flow of gaseous CO2 at a pressure above the CO2 triple point pressure. The gaseous CO2 is contacted and then condensed by the melting dry ice in the slurry to generate liquid CO2.
    Type: Grant
    Filed: December 2, 2016
    Date of Patent: November 5, 2019
    Assignee: General Electric Company
    Inventors: Irina Pavlovna Spiry, Albert Santo Stella, John Brian McDermott, Stephen Sanborn
  • Patent number: 10213732
    Abstract: A method for treatment of a flue gas involves feeding the flue gas and a lean solvent to an absorber. The method further involves reacting the flue gas with the lean solvent within the absorber to generate a clean flue gas and a rich solvent. The method also involves feeding the clean flue gas from the absorber and water from a source, to a wash tower to separate a stripped portion of the lean solvent from the clean flue gas to generate a washed clean flue gas and a mixture of the water and the stripped portion of the lean solvent. The method further involves treating at least a portion of the mixture of the water and the stripped portion of the lean solvent via a separation system to separate the water from the stripped portion of the lean solvent.
    Type: Grant
    Filed: August 14, 2017
    Date of Patent: February 26, 2019
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Irina Pavlovna Spiry, Benjamin Rue Wood, Surinder Prabhjot Singh, Robert James Perry, John Brian McDermott
  • Patent number: 10053987
    Abstract: A manufacturing method includes forming one or more grooves in a component that comprises a substrate with an outer surface. The substrate has at least one interior space. Each groove extends at least partially along the substrate and has a base and a top. The manufacturing method further includes applying a structural coating on at least a portion of the substrate and processing at least a portion of the surface of the structural coating so as to plastically deform the structural coating at least in the vicinity of the top of a respective groove, such that a gap across the top of the groove is reduced. A component is also disclosed and includes a structural coating disposed on at least a portion of a substrate, where the surface of the structural coating is faceted in the vicinity of the respective groove.
    Type: Grant
    Filed: October 31, 2015
    Date of Patent: August 21, 2018
    Assignee: General Electric Company
    Inventors: Ronald Scott Bunker, Scott Andrew Weaver, Don Mark Lipkin, John Brian McDermott
  • Publication number: 20180156074
    Abstract: A CO2 energy storage system includes a storage tank that stores a CO2 slurry, including dry ice and liquid CO2, at CO2 triple point temperature and pressure conditions. The storage system also includes a first pump coupled in flow communication with the storage tank. The first pump is configured to receive the CO2 slurry from the storage tank and to increase a pressure of the CO2 slurry to a pressure above the CO2 triple point pressure. The energy storage system further includes a contactor coupled in flow communication with the first pump. The contactor is configured to receive the high pressure CO2 slurry from the pump and to receive a first flow of gaseous CO2 at a pressure above the CO2 triple point pressure.
    Type: Application
    Filed: December 2, 2016
    Publication date: June 7, 2018
    Inventors: Irina Pavlovna Spiry, Albert Santo Stella, John Brian McDermott, Stephen Sanborn
  • Patent number: 9919261
    Abstract: A method for separating carbon dioxide (CO2) from a gas stream is provided. The method includes reacting at least a portion of CO2 in the gas stream with a plurality of liquid sorbent particles to form a plurality of solid adduct particles and a first CO2-lean gas stream; the solid adduct particles entrained in the first CO2-lean gas stream to form an entrained gas stream. The method includes separating at least a portion of the plurality of solid adduct particles from the entrained gas stream in a separation unit to form an adduct stream and a second CO2-lean gas stream. The method further includes heating at least a portion of the adduct stream in a desorption unit to form a CO2 stream and a regenerated liquid sorbent stream. A system for separating CO2 from a gas stream is also provided.
    Type: Grant
    Filed: April 1, 2016
    Date of Patent: March 20, 2018
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Tiffany Elizabeth Pinard Westendorf, Benjamin Rue Wood, Sarah Elizabeth Genovese, John Brian McDermott
  • Publication number: 20170341016
    Abstract: A method for treatment of a flue gas involves feeding the flue gas and a lean solvent to an absorber. The method further involves reacting the flue gas with the lean solvent within the absorber to generate a clean flue gas and a rich solvent. The method also involves feeding the clean flue gas from the absorber and water from a source, to a wash tower to separate a stripped portion of the lean solvent from the clean flue gas to generate a washed clean flue gas and a mixture of the water and the stripped portion of the lean solvent. The method further involves treating at least a portion of the mixture of the water and the stripped portion of the lean solvent via a separation system to separate the water from the stripped portion of the lean solvent.
    Type: Application
    Filed: August 14, 2017
    Publication date: November 30, 2017
    Inventors: Irina Pavlovna SPIRY, Benjamin Rue WOOD, Surinder Prabhjot SINGH, Robert James PERRY, John Brian MCDERMOTT
  • Patent number: 9764274
    Abstract: A method for treatment of a flue gas involves feeding the flue gas and a lean solvent to an absorber. The method further involves reacting the flue gas with the lean solvent within the absorber to generate a clean flue gas and a rich solvent. The method also involves feeding the clean flue gas from the absorber and water from a source, to a wash tower to separate a stripped portion of the lean solvent from the clean flue gas to generate a washed clean flue gas and a mixture of the water and the stripped portion of the lean solvent. The method further involves treating at least a portion of the mixture of the water and the stripped portion of the lean solvent via a separation system to separate the water from the stripped portion of the lean solvent.
    Type: Grant
    Filed: December 11, 2014
    Date of Patent: September 19, 2017
    Assignee: General Electric Company
    Inventors: Irina Pavlovna Spiry, Benjamin Rue Wood, Surinder Prabhjot Singh, Robert James Perry, John Brian McDermott
  • Patent number: 9656205
    Abstract: A system and method for treatment of a medium is disclosed. The system includes a plurality of separator zones and a plurality of heat transfer zones. Each of the separator zone and the heat transfer zone among the plurality of separator zones and heat transfer zones respectively, are disposed alternatively in a flow duct. Further, each separator zone includes an injector device for injecting a sorbent into the corresponding separator zone. Within the corresponding separator zone, the injected sorbent is reacted with a gaseous medium flowing in the flow duct, so as to generate a reacted gaseous medium and a reacted sorbent. Further, each heat transfer zone exchanges heat between the reacted gaseous medium fed from the corresponding separator zone and a heat transfer medium.
    Type: Grant
    Filed: June 28, 2013
    Date of Patent: May 23, 2017
    Assignee: General Electric Company
    Inventors: Surinder Prabhjot Singh, Harish Radhakrishna Acharya, Robert James Perry, John Brian McDermott
  • Patent number: 9580996
    Abstract: A method for processing a flowback composition stream from a well head includes controlling a first flow rate of the flow back composition stream to a second flow rate by regulating the flowback composition stream from a first pressure to a second pressure. The method also includes separating the flowback composition stream into a first gas stream and a condensed stream. The method includes discharging the condensed stream to a degasser and degassing a carbon dioxide rich gas from the condensed stream. The method also includes mixing the carbon dioxide rich gas stream with the first gas stream to produce a second gas stream. The method includes controlling a third flow rate of the second gas stream by regulating a third pressure of the second gas stream to a fourth pressure that is different than the third pressure.
    Type: Grant
    Filed: May 27, 2014
    Date of Patent: February 28, 2017
    Assignee: General Electric Company
    Inventors: Stephen Duane Sanborn, Imdad Imam, Andrew Philip Shapiro, John Brian McDermott, Harish Radhakrishna Acharya, Teresa Grocela Rocha, Jalal Hunain Zia, Johanna Wellington
  • Patent number: 9427697
    Abstract: A method for separating carbon dioxide (CO2) from a gas stream is provided. The method includes reacting at least a portion of CO2 in the gas stream with a plurality of liquid sorbent particles to form a plurality of solid adduct particles and a first CO2-lean gas stream; the solid adduct particles entrained in the first CO2-lean gas stream to form an entrained gas stream. The method includes separating at least a portion of the plurality of solid adduct particles from the entrained gas stream in a separation unit to form an adduct stream and a second CO2-lean gas stream. The method further includes heating at least a portion of the adduct stream in a desorption unit to form a CO2 stream and a regenerated liquid sorbent stream. A system for separating CO2 from a gas stream is also provided.
    Type: Grant
    Filed: March 26, 2012
    Date of Patent: August 30, 2016
    Assignee: General Electric Company
    Inventors: Tiffany Elizabeth Pinard Westendorf, Sarah Elizabeth Genovese, Benjamin Rue Wood, John Brian McDermott
  • Publication number: 20160214058
    Abstract: A method for separating carbon dioxide (CO2) from a gas stream is provided. The method includes reacting at least a portion of CO2 in the gas stream with a plurality of liquid sorbent particles to form a plurality of solid adduct particles and a first CO2-lean gas stream; the solid adduct particles entrained in the first CO2-lean gas stream to form an entrained gas stream. The method includes separating at least a portion of the plurality of solid adduct particles from the entrained gas stream in a separation unit to form an adduct stream and a second CO2-lean gas stream. The method further includes heating at least a portion of the adduct stream in a desorption unit to form a CO2 stream and a regenerated liquid sorbent stream. A system for separating CO2 from a gas stream is also provided.
    Type: Application
    Filed: April 1, 2016
    Publication date: July 28, 2016
    Inventors: Tiffany Elizabeth Pinard Westendorf, Benjamin Rue Wood, Sarah Elizabeth Genovese, John Brian McDermott
  • Publication number: 20160175770
    Abstract: A method for separating carbon dioxide (CO2) from a fluid stream comprising CO2 and a liquid solvent is provided. The method includes receiving the fluid stream at a first flashing means to obtain a first CO2 stream and a first CO2 lean fluid stream enriched in the liquid solvent in comparison with the fluid stream. Further, the method also includes receiving the first CO2 lean fluid stream at a second flashing means to obtain a second CO2 stream and a second CO2 lean fluid stream that is enriched in the liquid solvent in comparison with the first CO2 lean fluid stream.
    Type: Application
    Filed: December 22, 2014
    Publication date: June 23, 2016
    Inventors: Irina Pavlovna Spiry, Benjamin Rue Wood, John Brian McDermott, Surinder Prabhjot Singh, Sarah Elizabeth Genovese
  • Publication number: 20160166984
    Abstract: A method for treatment of a flue gas involves feeding the flue gas and a lean solvent to an absorber. The method further involves reacting the flue gas with the lean solvent within the absorber to generate a clean flue gas and a rich solvent. The method also involves feeding the clean flue gas from the absorber and water from a source, to a wash tower to separate a stripped portion of the lean solvent from the clean flue gas to generate a washed clean flue gas and a mixture of the water and the stripped portion of the lean solvent. The method further involves treating at least a portion of the mixture of the water and the stripped portion of the lean solvent via a separation system to separate the water from the stripped portion of the lean solvent.
    Type: Application
    Filed: December 11, 2014
    Publication date: June 16, 2016
    Inventors: Irina Pavlovna Spiry, Benjamin Rue Wood, Surinder Prabhjot Singh, Robert James Perry, John Brian McDermott
  • Publication number: 20160053618
    Abstract: A manufacturing method includes forming one or more grooves in a component that comprises a substrate with an outer surface. The substrate has at least one interior space. Each groove extends at least partially along the substrate and has a base and a top. The manufacturing method further includes applying a structural coating on at least a portion of the substrate and processing at least a portion of the surface of the structural coating so as to plastically deform the structural coating at least in the vicinity of the top of a respective groove, such that a gap across the top of the groove is reduced. A component is also disclosed and includes a structural coating disposed on at least a portion of a substrate, where the surface of the structural coating is faceted in the vicinity of the respective groove.
    Type: Application
    Filed: October 31, 2015
    Publication date: February 25, 2016
    Inventors: Ronald Scott Bunker, Scott Andrew Weaver, Don Mark Lipkin, John Brian McDermott
  • Patent number: 9249672
    Abstract: A manufacturing method includes forming one or more grooves in a component that comprises a substrate with an outer surface. The substrate has at least one interior space. Each groove extends at least partially along the substrate and has a base and a top. The manufacturing method further includes applying a structural coating on at least a portion of the substrate and processing at least a portion of the surface of the structural coating so as to plastically deform the structural coating at least in the vicinity of the top of a respective groove, such that a gap across the top of the groove is reduced. A component is also disclosed and includes a structural coating disposed on at least a portion of a substrate, where the surface of the structural coating is faceted in the vicinity of the respective groove.
    Type: Grant
    Filed: August 27, 2012
    Date of Patent: February 2, 2016
    Assignee: General Electric Company
    Inventors: Ronald Scott Bunker, Scott Andrew Weaver, Don Mark Lipkin, John Brian McDermott
  • Patent number: 9217112
    Abstract: A system and method of converting natural gases to liquids is provided. The system includes a catalytic partial oxidation (CPO) system with natural gas, air and steam input, a Fischer-Tropsch (F-T) system taking syngas from the CPO system, and supplying product gases to a power engine (PE), after separation of the product liquids. An F-T steam output line is in fluid communication with the CPO-steam input line. The energy output from the PE is supplied to the compressors and condensers, to provide self-sustainability in energy, for the gas-to-liquid separation system.
    Type: Grant
    Filed: July 9, 2015
    Date of Patent: December 22, 2015
    Assignee: General Electric Company
    Inventors: Surinder Prabhjot Singh, John Brian McDermott, Lingzhi Zhang