Patents by Inventor John C. Daynes

John C. Daynes has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20140272860
    Abstract: Work flows are modeled as a graph of interdependent tasks to be performed. The tasks to be performed are set by a task file module configured to enable interactions between tasks and including modules for event viewing, protocol assistance, smart messaging, smart indices, reference material lookup. A decision support manager module is configured to construct data and model profiles for storage in a data and model profile bank, events for storage in a decision support events bank, and protocols for storage in a decision support protocol bank. Configuration files are provided to specify a configuration for execution of one of the tasks. Data entered through a user interface or from a network via a wireless or wired communication module may define task files in the task files module, configuration files in the configuration files module, as well as data, events, and protocols to be used for a defibrillation procedure.
    Type: Application
    Filed: March 15, 2013
    Publication date: September 18, 2014
    Applicant: Physio-Control, Inc.
    Inventors: Ken Peterson, Mitchell A. Smith, Denny Craig Edwards, Nathaniel Paul Barcelos, James Wootten, Clayton Young, Randy L. Merry, Dana S. Lewis, John C. Daynes, Paul R. Juhasz, David Okey, Steven Witters, Ira M. Turner
  • Patent number: 8788038
    Abstract: A modular external defibrillator system in embodiments of the teachings may include one or more of the following features: (a) a base containing a defibrillator module to deliver a defibrillation shock to a patient, (b) a patient parameter monitoring pod connectable to a patient via patient lead cables to collect patient data, the patient data including at least one patient vital sign, (c) a power supply sharing link between the base and the pod, the pod receiving power from the base via the power sharing link, the pod being operable to collect patient data without receiving power from the base, and (d) an external battery charger, the battery charger interrogating the batteries to determine battery information used for battery charging, the battery information including at least one of charging voltage, charging current, and charge time.
    Type: Grant
    Filed: December 17, 2004
    Date of Patent: July 22, 2014
    Assignee: Physio-Control, Inc.
    Inventors: James S. Neumiller, Thomas J. McGrath, Rockland W. Nordness, John C. Daynes
  • Patent number: 8738128
    Abstract: A modular external defibrillator system in embodiments of the teachings may include one or more of the following features: a base containing a defibrillator to deliver a defibrillation shock to a patient, (b) one or more pods each connectable to a patient via patient lead cables to collect at least one patient vital sign, the pods operable at a distance from the base, (c) a wireless communications link between the base and a selected one of the two or more pods to carry the at least one vital sign from the selected pod to the base, the selection being based on which pod is associated with the base.
    Type: Grant
    Filed: May 9, 2011
    Date of Patent: May 27, 2014
    Assignee: Physio-Control, Inc.
    Inventors: Christopher Pearce, Thomas J. McGrath, Randy L. Merry, John C. Daynes, Kenneth J. Peterson, Peter Wung, Michael D. McMahon, D. Craig Edwards, Eric T. Hoierman, Rockland W. Nordness, James S. Neumiller
  • Publication number: 20140142647
    Abstract: A patient parameter monitoring pod in embodiments of the teachings may include one or more of the following features: (a) portable housing containing a power supply, (b) a patient parameter module connectable to a patient via lead cables to collect patient data, the patient data including at least one vital sign, (c) a transceiver adapted to wirelessly transmit the patient data to a defibrillator, (d) a data port adapted to supply the patient data via a direct electrical connection to the defibrillator, and (e) a carrying handle extending from the housing proximate a patient lead cable port that permits connection of the lead cables to the pod, the carrying handle positioned to protect the patient lead cable port and the patient lead cables attached to the port from direct impact.
    Type: Application
    Filed: October 31, 2013
    Publication date: May 22, 2014
    Applicant: Physio-Control, Inc.
    Inventors: Michael D. McMahon, Christopher Pearce, Peter Wung, John C. Daynes, Kenneth J. Peterson, Maren L. Nelson, James S. Neumiller
  • Publication number: 20140052201
    Abstract: Medical devices and methods in which a user can treat a patient or monitor a parameter of the patient or both may include a housing, a patient module located within the housing that is used for treating the patient, monitoring the patient or both, and a control panel. The control panel is attached to the housing and has a first surface and a second surface and is positionable between a first position and a second position with respect to the housing. The first position exposes a user to a first surface of the control panel and the second position exposes the user to a second surface of the control panel. A first set of user controls are located on one or the other of the first surface and the second surface and are structured to allow the user to interact with the patient module.
    Type: Application
    Filed: August 20, 2012
    Publication date: February 20, 2014
    Applicant: PHYSIO-CONTROL, INC.
    Inventor: John C. Daynes
  • Publication number: 20140052202
    Abstract: Medical devices and methods of operating medical devices that treat and monitor patients include a housing and a module located within the housing. The module is configured to perform the treating and monitoring parameters of the patient. A screen is also attached to the housing. The screen is viewable by the user outside of the housing. The medical device also includes a door that is coupled with the housing. The door is movable between a closed position that covers at least some portion of the coverable portion of the screen so as to prevent the coverable portion of the screen from being viewed and an open position that does not cover the coverable portion of the screen.
    Type: Application
    Filed: August 20, 2012
    Publication date: February 20, 2014
    Applicant: PHYSIO-CONTROL, INC.
    Inventor: John C. Daynes
  • Publication number: 20130331899
    Abstract: A modular external defibrillator system in embodiments of the teachings may include one or more of the following features: a base containing a defibrillator to deliver a defibrillation shock to a patient, (b) one or more pods each connectable to a patient via patient lead cables to collect at least one patient vital sign, the pods operable at a distance from the base, (c) a wireless communications link between the base and a selected one of the two or more pods to carry the at least one vital sign from the selected pod to the base, the selection being based on which pod is associated with the base.
    Type: Application
    Filed: August 13, 2013
    Publication date: December 12, 2013
    Applicant: Physio-Control, Inc.
    Inventors: Christopher Pearce, Thomas J. McGrath, Randy L. Merry, John C. Daynes, Kenneth J. Peterson, Peter Wung, Michael D. McMahon, D. Craig Edwards, Eric T. Hoierman, Rockland W. Nordness, James S. Neumiller
  • Patent number: 8600491
    Abstract: A patient parameter monitoring pod in embodiments of the teachings may include one or more the following features: (a) portable housing containing a power supply, (b) a patient parameter module connectable to a patient via lead cables to collect patient data, the patient data including at least one vital sign, (c) a transceiver adapted to wirelessly transmit the patient data to a defibrillator, (d) a data port adapted to supply the patient data via a direct electrical connection to the defibrillator, and (e) a carrying handle extending from the housing proximate a patient lead cable port that permits connection of the lead cables to the pod, the carrying handle positioned to protect the patient lead cable port and the patient lead cables attached to the port from direct impact.
    Type: Grant
    Filed: December 17, 2004
    Date of Patent: December 3, 2013
    Assignee: Physio-Control, Inc.
    Inventors: Michael D. McMahon, Christopher Pearce, Peter Wung, John C. Daynes, Ken Peterson, Maren L. Nelson, James S. Neumiller
  • Publication number: 20120226204
    Abstract: Time after time studies find that often, even when administered by trained professionals, cardiopulmonary resuscitation (CPR) compression rates and depth are inadequate. Too week, shallow or too forceful compressions may contribute to suboptimal patient outcome. Several parameters are crucial for optimal and properly-administered CPR. Crucial parameters include proper hand positioning on the patient's chest, depth of compression of 4-5 cm, and compression rate of 100 compressions per minute. The crucial parameters are often affected by patient parameters, and relative to the patient, rescuer parameters, such as patient thoracic volume; weight; age; gender; and rescuer's, relative to the patient's, parameters, such as weight, height; physical form, etc. Proposed is an automated CPR feedback device with user programmable settings for assisting with real-time feedback and subsequently correcting rescuers patient customized CPR technique.
    Type: Application
    Filed: November 29, 2011
    Publication date: September 6, 2012
    Applicant: Physio-Conrol, Inc.
    Inventors: Micha Coleman, Richard C. Nova, Maegan P. Wilkinson, John C. Daynes, Ryan W. Apperson
  • Patent number: 8183823
    Abstract: In an embodiment, a medical device can be used with a power adapter system. In addition, it can receive a data set from the power adapter system, and examine the data set to determine whether the data set confirms or not an authentication of the power adapter for use with the medical device. If the authentication is not confirmed, the external medical device can operate differently than otherwise. For example, power can be drawn from the power adapter system only if an inside battery is not charged.
    Type: Grant
    Filed: April 14, 2010
    Date of Patent: May 22, 2012
    Assignee: Physio-Control, Inc.
    Inventors: James S. Neumiller, John C. Daynes, Kenneth J. Peterson, Thomas J. McGrath, Richard C. Nova
  • Patent number: 8179087
    Abstract: In an embodiment, a medical device can be used with a power adapter system. In addition, it can receive a data set from the power adapter system, and examine the data set to determine whether the data set confirms or not an authentication of the power adapter for use with the medical device. If the authentication is not confirmed, the external medical device can operate differently than otherwise. For example, power can be drawn more slowly from the power adapter system.
    Type: Grant
    Filed: April 14, 2010
    Date of Patent: May 15, 2012
    Assignee: Physio-Control, Inc.
    Inventors: James S. Neumiller, John C. Daynes, Kenneth J. Peterson, Thomas J. McGrath, Richard C. Nova
  • Publication number: 20110208259
    Abstract: A modular external defibrillator system in embodiments of the teachings may include one or more of the following features: a base containing a defibrillator to deliver a defibrillation shock to a patient, (b) one or more pods each connectable to a patient via patient lead cables to collect at least one patient vital sign, the pods operable at a distance from the base, (c) a wireless communications link between the base and a selected one of the two or more pods to carry the at least one vital sign from the selected pod to the base, the selection being based on which pod is associated with the base.
    Type: Application
    Filed: May 9, 2011
    Publication date: August 25, 2011
    Applicant: Physio-Control, Inc.
    Inventors: Christopher Pearce, Thomas J. McGrath, Randy L. Merry, John C. Daynes, Kenneth J. Peterson, Peter Wung, Michael D. McMahon, D. Craig Edwards, Eric T. Hoierman, Rockland W. Nordness, James S. Neumiller
  • Patent number: 7957798
    Abstract: A modular external defibrillator system in embodiments of the teachings may include one or more of the following features: a base containing a defibrillator to deliver a defibrillation shock to a patient, (b) one or more pods each connectable to a patient via patient lead cables to collect at least one patient vital sign, the pods operable at a distance from the base, (c) a wireless communications link between the base and a selected one of the two or more pods to carry the at least one vital sign from the selected pod to the base, the selection being based on which pod is associated with the base.
    Type: Grant
    Filed: December 17, 2004
    Date of Patent: June 7, 2011
    Assignee: Physio-Control, Inc.
    Inventors: Christopher Pearce, Thomas J. McGrath, Randy L. Merry, John C. Daynes, Kenneth J. Peterson, Peter Wung, Michael D. McMahon, D. Craig Edwards, Eric T. Hoierman, Rockland W. Nordness, James S. Neumiller
  • Patent number: 7813800
    Abstract: The disclosure describes a medical device that provides an indication of the status of an energy storage device from which it receives power. For example, the medical device may provide an estimate of the number of therapy delivery events available from the medical device based on an estimate of the amount of energy stored in the energy storage device. The medical device may be an external defibrillator, and the therapy delivery events may be defibrillation shocks. Additionally or alternatively, the medical device may indicate an estimated amount of operational time remaining in each of a plurality of monitoring modes based on the estimated amount of stored energy. The energy storage device may be a battery. An energy storage device that itself provides an indication of its status is also disclosed.
    Type: Grant
    Filed: October 13, 2004
    Date of Patent: October 12, 2010
    Assignee: Physio-Control, Inc.
    Inventors: Susan H. Fleenor, John C. Daynes
  • Publication number: 20100198287
    Abstract: In an embodiment, a medical device can be used with a power adapter system. In addition, it can receive a data set from the power adapter system, and examine the data set to determine whether the data set confirms or not an authentication of the power adapter for use with the medical device. If the authentication is not confirmed, the external medical device can operate differently than otherwise. For example, power can be drawn more slowly from the power adapter system.
    Type: Application
    Filed: April 14, 2010
    Publication date: August 5, 2010
    Applicant: Physio-Control, Inc.
    Inventors: James S. Neumiller, John C. Daynes, Kenneth J. Peterson, Thomas J. McGrath, Richard C. Nova
  • Publication number: 20100198286
    Abstract: In an embodiment, a medical device can be used with a power adapter system. In addition, it can receive a data set from the power adapter system, and examine the data set to determine whether the data set confirms or not an authentication of the power adapter for use with the medical device. If the authentication is not confirmed, the external medical device can operate differently than otherwise. For example, power can be drawn from the power adapter system only if an inside battery is not charged.
    Type: Application
    Filed: April 14, 2010
    Publication date: August 5, 2010
    Applicant: Physio-Control, Inc.
    Inventors: James S. Neumiller, John C. Daynes, Kenneth J. Peterson, Thomas J. McGrath, Richard C. Nova
  • Patent number: 7728548
    Abstract: A method for operating an external medical device such as a defibrillator includes obtaining a data set from a battery pack and examining the data set to determine whether the battery pack is authenticated for use in the external medical device. If the examination does not confirm the authentication, the method includes causing the device to follow a non-authenticated battery pack protocol. The non-authenticated battery pack protocol may include drawing power from the non-authenticated battery pack only if it is the only available source of power for the external medical device. It may include limiting functionality of the external medical device. It may include modifying the battery status information display for the non-authenticated battery pack.
    Type: Grant
    Filed: June 2, 2008
    Date of Patent: June 1, 2010
    Assignee: Physio-Control, Inc.
    Inventors: John C. Daynes, James S. Neumiller, Kenneth J. Peterson, Richard C. Nova, Thomas J. McGrath
  • Publication number: 20090295326
    Abstract: A method for operating an external medical device such as a defibrillator includes obtaining a data set from a battery pack and examining the data set to determine whether the battery pack is authenticated for use in the external medical device. If the examination does not confirm the authentications the method includes causing the device to follow a non-authenticated battery pack protocol. The non-authenticated battery pack protocol may include drawing power from the non-authenticated battery pack only if it is the only available source of power for the external medical device. It may include limiting functionality of the external medical device. It may include modifying the battery status information display for the non-authenticated battery pack.
    Type: Application
    Filed: June 2, 2008
    Publication date: December 3, 2009
    Applicant: Physio-Control, Inc.
    Inventors: John C. Daynes, James S. Neumiller, Kenneth J. Peterson, Richard C. Nova, Thomas J. McGrath
  • Publication number: 20080221397
    Abstract: A patient parameter monitoring pod in embodiments of the teachings may include one or more the following features: (a) portable housing containing a power supply, (b) a patient parameter module connectable to a patient via lead cables to collect patient data, the patient data including at least one vital sign, (c) a transceiver adapted to wirelessly transmit the patient data to a defibrillator, (d) a data port adapted to supply the patient data via a direct electrical connection to the defibrillator, and (e) a carrying handle extending from the housing proximate a patient lead cable port that permits connection of the lead cables to the pod, the carrying handle positioned to protect the patient lead cable port and the patient lead cables attached to the port from direct impact.
    Type: Application
    Filed: December 17, 2004
    Publication date: September 11, 2008
    Inventors: Michael D. McMahon, Christopher Pearce, Peter Wung, John C. Daynes, Kenneth J. Peterson, Maren L. Nelson, James S. Neumiller
  • Patent number: D591039
    Type: Grant
    Filed: April 2, 2008
    Date of Patent: April 28, 2009
    Assignee: Physio-Control, Inc.
    Inventors: Peter Wung, Ken Dickenson, John C Daynes