Patents by Inventor John C. Gord

John C. Gord has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6950708
    Abstract: An implanted medical device (e.g. infusion pump) and an external device communicate with one another via telemetry messages that are receivable only during windows or listening periods. Each listening period is open for a prescribed period of time and is spaced from successive listening periods by an interval. The prescribed period of time is typically kept small to minimize power consumption. To increase likelihood of successful communication, the window may be forced to an open state, by use of an attention signal, in anticipation of an incoming message. To further minimize power consumption, it is desirable to minimize use of extended attention signals, which is accomplished by the transmitter maintaining an estimate of listening period start times and attempting to send messages only during listening periods. In the communication device, the estimate is updated as a result of information obtained with the reception of each message from the medical device.
    Type: Grant
    Filed: July 29, 2002
    Date of Patent: September 27, 2005
    Assignee: Medtronic Minimed, Inc.
    Inventors: Sam W. Bowman IV, Ronald J. Lebel, Daniel H. Villegas, John C. Gord
  • Patent number: 6809507
    Abstract: An electronic circuit for sensing an output of a sensor having at least one electrode pair and circuitry for obtaining and processing the sensor output. The electrode pair may be laid out such that one electrode is wrapped around the other electrode in a U-shaped fashion. The electronic circuitry may include, among other things, a line interface for interfacing with input/output lines, a rectifier in parallel with the line interface, a counter connected to the line interface and a data converter connected to the counter and the electrode pair. The data converter may be a current-to-frequency converter. In addition, the rectifier may derive power for the electronic circuit from communication pulses received on the input/output lines.
    Type: Grant
    Filed: December 28, 2001
    Date of Patent: October 26, 2004
    Assignee: Medtronic Minimed, Inc.
    Inventors: Wayne A. Morgan, David Choy, John C. Gord, Rajiv Shah
  • Patent number: 6799070
    Abstract: Battery driven voltage control circuitry charges an output capacitor, which periodically supplies a current pulse. The circuitry converts battery voltage VBAT to a charging voltage VUPC based upon programmed parameters and the voltage VCOMPL at the capacitor. The circuitry includes a voltage converter for multiplying VBAT to produce VUPC. VCOMPL is sampled to determine its “droop” at the end of an output current pulse. If the droop is lower than a threshold, then the voltage converter increases the charging voltage. If the droop is above a threshold, then the voltage converter reduces the charging voltage. This feedback maintains the output voltage within an acceptable operating range to produce an efficacious output current pulse for stimulation without causing unproductive energy loss. In order to avoid premature depletion of battery energy, VUPC is compared with VCOMPL to determine the optimum clock rate to be used to convert VBAT to VUPC.
    Type: Grant
    Filed: January 23, 2002
    Date of Patent: September 28, 2004
    Assignee: The Alfred E. Mann Foundation for Scientific Research
    Inventors: James H. Wolfe, John C. Gord, Joseph H. Schulman
  • Publication number: 20040103906
    Abstract: A device configured for implanting beneath a patient's skin for the purpose of tissue, e.g., nerve or muscle, stimulation and/or parameter monitoring and/or data communication. Devices in accordance with the invention are comprised of a sealed housing, typically having an axial dimension of less than 60 mm and a lateral dimension of less than 6 mm, having a non-circular, e.g., an oval or polygon shaped, cross-section containing a power source for powering electronic circuitry within including a controller, an address storage means, a data signal receiver and an input/output transducer. When used as a stimulator, such a device is useful in a wide variety of applications to stimulate nerves and associated neural pathways. Alternatively, devices of the present invention are configurable to monitor a biological parameter. Furthermore, a placement structure is shown for facilitating placement of the implantable device proximate to neural/muscular tissue.
    Type: Application
    Filed: November 21, 2003
    Publication date: June 3, 2004
    Inventors: Joseph H. Schulman, Robert Dan Dell, John C. Gord
  • Patent number: 6733446
    Abstract: An implanted medical device (e.g. infusion pump) and an external device communicate with one another via telemetry messages that are receivable only during windows or listening periods. Each listening period is open for a prescribed period of time and is spaced from successive listening periods by an interval. The prescribed period of time is typically kept small to minimize power consumption. To increase likelihood of successful communication, the window may be forced to an open state, by use of an attention signal, in anticipation of an incoming message. To further minimize power consumption, it is desirable to minimize use of extended attention signals, which is accomplished by the transmitter maintaining an estimate of listening period start times and attempting to send messages only during listening periods. In the communication device, the estimate is updated as a result of information obtained with the reception of each message from the medical device.
    Type: Grant
    Filed: January 22, 2001
    Date of Patent: May 11, 2004
    Assignee: Medtronic Minimed, Inc.
    Inventors: Ronald J. Lebel, Varaz Shahmirian, John C. Gord, John T. Armstrong, John D. Richert
  • Publication number: 20040082982
    Abstract: The present invention is directed to a multi-mode crystal oscillator system selectively configurable to minimize power consumption or noise generation. Such a system is particularly applicable to the communication system of an implantable device, e.g., the microstimulator/sensor device described in U.S. Pat. Nos. 6,164,284 and 6,185,452. In such devices, their small size limits the size of the battery contained within and thus makes it essential to minimize power consumption. Additionally, the small size and battery capacity result in a limited transmission power. Furthermore, the small size limits the antenna efficiency which makes it desirable to limit any noise generation to maximize the signal-to-noise level of the resulting receive signal. Accordingly, embodiments of the present invention alternatively supply power to the oscillator in either a first mode that minimizes power consumption or a second mode that minimizes noise generation.
    Type: Application
    Filed: October 24, 2002
    Publication date: April 29, 2004
    Inventors: John C. Gord, Gregory Jay Delmain, Paul Derocco
  • Publication number: 20040011366
    Abstract: A system for monitoring and/or affecting parameters of a patient's body and more particularly to such a system comprised of a system control unit (SCU) and one or more other devices, preferably battery-powered, implanted in the patient's body, i.e., within the envelope defined by the patient's skin. Each such implanted device is configured to be monitored and/or controlled by the SCU via a wireless communication channel. In accordance with the invention, the SCU comprises a programmable unit capable of (1) transmitting commands to at least some of a plurality of implanted devices and (2) receiving data signal from at least some of those implanted devices. In accordance with a preferred embodiment, the system operates in closed loop fashion whereby the commands transmitted by the SCU are dependent, in part, on the content of the data signals received by the SCU.
    Type: Application
    Filed: March 17, 2003
    Publication date: January 22, 2004
    Inventors: Joseph H. Schulman, Robert Dan Dell, John C. Gord
  • Patent number: 6564807
    Abstract: A system for monitoring and/or affecting parameters of a patient's body and more particularly to such a system comprised of a system control unit (SCU) and one or more other devices, preferably battery-powered, implanted in the patient's body, i.e., within the envelope defined by the patient's skin. Each such implanted device is configured to be monitored and/or controlled by the SCU via a wireless communication channel. In accordance with the invention, the SCU comprises a programmable unit capable of (1) transmitting commands to at least some of a plurality of implanted devices and (2) receiving data signal from at least some of those implanted devices. In accordance with a preferred embodiment, the system operates in closed loop fashion whereby the commands transmitted by the SCU are dependent, in part, on the content of the data signals received by the SCU.
    Type: Grant
    Filed: September 30, 2000
    Date of Patent: May 20, 2003
    Assignee: Alfred E. Mann Foundation for Scientific Research
    Inventors: Joseph H. Schulman, Robert Dan Dell, John C. Gord
  • Publication number: 20030076082
    Abstract: An electronic circuit for sensing an output of a sensor having at least one electrode pair and circuitry for obtaining and processing the sensor output. The electrode pair may be laid out such that one electrode is wrapped around the other electrode in a U-shaped fashion. The electronic circuitry may include, among other things, a line interface for interfacing with input/output lines, a rectifier in parallel with the line interface, a counter connected to the line interface and a data converter connected to the counter and the electrode pair. The data converter may be a current-to-frequency converter. In addition, the rectifier may derive power for the electronic circuit from communication pulses received on the input/output lines.
    Type: Application
    Filed: December 28, 2001
    Publication date: April 24, 2003
    Inventors: Wayne A. Morgan, David Choy, John C. Gord, Rajiv Shah
  • Publication number: 20030078484
    Abstract: An implantable substrate sensor has electronic circuitry and electrodes formed on opposite sides of a substrate. A protective coating covers the substrate, effectively hermetically sealing the electronic circuitry under the coating. Exposed areas of the electrodes are selectively left uncovered by the protective coating, thereby allowing such electrodes to be exposed to body tissue and fluids when the sensor is implanted in living tissue. The substrate on which the electronic circuitry and electrodes are formed is the same substrate or “chip” on which an integrated circuit (IC) is formed, which integrated circuit contains the desired electronic circuitry. Such approach eliminates the need for an hermetically sealed lid or cover to cover hybrid electronic circuitry, and allows the sensor to be made much thinner than would otherwise be possible. In one embodiment, two such substrate sensors may be placed back-to-back, with the electrodes facing outward.
    Type: Application
    Filed: November 4, 2002
    Publication date: April 24, 2003
    Applicant: Alfred E. Mann Foundation for Scientific Research
    Inventors: Joseph H. Schulman, Charles L. Byers, John C. Gord, Rajiv Shah, Lyle Dean Canfield
  • Publication number: 20030069614
    Abstract: An implanted medical device (e.g. infusion pump) and an external device communicate with one another via telemetry messages that are receivable only during windows or listening periods. Each listening period is open for a prescribed period of time and is spaced from successive listening periods by an interval. The prescribed period of time is typically kept small to minimize power consumption. To increase likelihood of successful communication, the window may be forced to an open state, by use of an attention signal, in anticipation of an incoming message. To further minimize power consumption, it is desirable to minimize use of extended attention signals, which is accomplished by the transmitter maintaining an estimate of listening period start times and attempting to send messages only during listening periods. In the communication device, the estimate is updated as a result of information obtained with the reception of each message from the medical device.
    Type: Application
    Filed: July 29, 2002
    Publication date: April 10, 2003
    Applicant: Medtronic MiniMed, Inc.
    Inventors: Sam W. Bowman, Ronald J. Lebel, Daniel H. Villegas, John C. Gord
  • Publication number: 20030028080
    Abstract: An implanted medical device (e.g. infusion pump) and an external device communicate with one another via telemetry messages that are receivable only during windows or listening periods. Each listening period is open for a prescribed period of time and is spaced from successive listening periods by an interval. The prescribed period of time is typically kept small to minimize power consumption. To increase likelihood of successful communication, the window may be forced to an open state, by use of an attention signal, in anticipation of an incoming message. To further minimize power consumption, it is desirable to minimize use of extended attention signals, which is accomplished by the transmitter maintaining an estimate of listening period start times and attempting to send messages only during listening periods. In the communication device, the estimate is updated as a result of information obtained with the reception of each message from the medical device.
    Type: Application
    Filed: January 22, 2001
    Publication date: February 6, 2003
    Inventors: Ronald J. Lebel, Varaz Shahmirian, John C. Gord, John T. Armstrong, John D. Richert
  • Patent number: 6498043
    Abstract: An implantable substrate sensor has electronic circuitry and electrodes formed on opposite sides of a substrate. A protective coating covers the substrate, effectively hermetically sealing the electronic circuitry under the coating. Exposed areas of the electrodes are selectively left uncovered by the protective coating, thereby allowing such electrodes to be exposed to body tissue and fluids when the sensor is implanted in living tissue. The substrate on which the electronic circuitry and electrodes are formed is the same substrate or “chip” on which an integrated circuit (IC) is formed, which integrated circuit contains the desired electronic circuitry. Such approach eliminates the need for an hermetically sealed lid or cover to cover hybrid electronic circuitry, and allows the sensor to be made much thinner than would otherwise be possible. In one embodiment, two such substrate sensors may be placed back-to-back, with the electrodes facing outward.
    Type: Grant
    Filed: November 22, 2000
    Date of Patent: December 24, 2002
    Assignee: Alfred E. Mann Foundation for Scientific Research
    Inventors: Joseph H. Schulman, Charles L. Byers, John C. Gord, Rajiv Shah, Lyle Dean Canfield
  • Patent number: 6472991
    Abstract: A communication protocol that is configured to extend the battery life of devices that monitor and/or affect body parameters and is particularly useful in a system comprised of a system control unit (SCU) and one or more implanted devices. Each such implanted device is configured to be monitored and/or controlled by the SCU via a wireless communication channel. The time between battery rechargings is determined by the battery capacity and the device's power consumption. Accordingly, the present invention reduces their average power consumption by reducing the usage duty cycle of their power consuming transmit and receive modes used to communicate with the SCU. By dedicating addressable time slots to each of the implantable devices in the system and limiting their use of receive and transmit modes to time periods proximate to these time slots, the average power consumption is accordingly reduced.
    Type: Grant
    Filed: June 15, 2001
    Date of Patent: October 29, 2002
    Assignee: Alfred E. Mann Foundation for Scientific Research
    Inventors: Joseph H. Schulman, John C. Gord, Paul D. DeRocco, Lawrence J. Karr, Dan Folkman, Andrew Barber
  • Patent number: 6458093
    Abstract: A device for insufflating gas into a corporeal cavity of a human or animal body has a connection for a gas source, a measuring unit provided with sensors for the fill gas pressure and the fill gas flow, which are disposed outside said corporeal cavity, and a control unit, to which the output signal of the sensors are applied, and which triggers a pressure regulator which reduces the fill pressure of the gas source to a pre-set insufflation pressure, and a flow regulator which regulates the fill gas flow to a pre-set desired gas flow value in accordance with first a square function, and then, after reaching the preset flow rate, in accordance with a linear function.
    Type: Grant
    Filed: April 2, 2001
    Date of Patent: October 1, 2002
    Assignee: Storz Endoskop GmbH
    Inventors: John C. Gord, Eric M. Jones, Juergen Kraft-Kivikoski
  • Patent number: 6427088
    Abstract: An implanted medical device (e.g. infusion pump) and an external device communicate with one another via telemetry messages that are receivable only during windows or listening periods. Each listening period is open for a prescribed period of time and is spaced from successive listening periods by an interval. The prescribed period of time is typically kept small to minimize power consumption. To increase likelihood of successful communication, the window may be forced to an open state, by use of an attention signal, in anticipation of an incoming message. To further minimize power consumption, it is desirable to minimize use of extended attention signals, which is accomplished by the transmitter maintaining an estimate of listening period start times and attempting to send messages only during listening periods. In the communication device, the estimate is updated as a result of information obtained with the reception of each message from the medical device.
    Type: Grant
    Filed: January 22, 2001
    Date of Patent: July 30, 2002
    Assignee: Medtronic MiniMed, Inc.
    Inventors: Sam W. Bowman, IV, Ronald J. Lebel, Daniel H. Villegas, John C. Gord
  • Publication number: 20020068957
    Abstract: Battery driven voltage control circuitry charges an output capacitor, which periodically supplies a current pulse. The circuitry converts battery voltage VBAT to a charging voltage VUPC based upon programmed parameters and the voltage VCOMPL at the capacitor. The circuitry includes a voltage converter for multiplying VBAT to produce VUPC. VCOMPL is sampled to determine its “droop” at the end of an output current pulse. If the droop is lower than a threshold, then the voltage converter increases the charging voltage. If the droop is above a threshold, then the voltage converter reduces the charging voltage. This feedback maintains the output voltage within an acceptable operating range to produce an efficacious output current pulse for stimulation without causing unproductive energy loss. In order to avoid premature depletion of battery energy, VUPC is compared with VCOMPL to determine the optimum clock rate to be used to convert VBAT to VUPC.
    Type: Application
    Filed: January 23, 2002
    Publication date: June 6, 2002
    Inventors: James H. Wolfe, John C. Gord, Joseph H. Schulman
  • Patent number: 6308101
    Abstract: A fully implantable cochlear implant system (170) and method includes an implantable cochlear stimulator (ICS) unit (212) that is connected to an implantable speech processor (ISP) unit (210). Both the ISP unit and the ICS unit reside in separate, hermetically-sealed, cases. The ICS unit has a coil (220) permanently connected thereto through which magnetic or inductive coupling may occur with a similar coil located externally during recharging, programming, or externally-controlled modes of operation. The ICS unit further has a cochlear electrode array (114) permanently connected thereto via a first multi-conductor cable (116). The ICS unit 212 also has a second multi-conductor cable (222) attached thereto, which second cable contains no more than five conductors. The second cable is detachably connected to the ISP unit via a connector (224) located on the case of the ISP unit.
    Type: Grant
    Filed: September 24, 1999
    Date of Patent: October 23, 2001
    Assignee: Advanced Bionics Corporation
    Inventors: Michael A. Faltys, Janusz A. Kuzma, John C. Gord
  • Patent number: 6259937
    Abstract: An implantable substrate sensor has electronic circuitry and electrodes formed on opposite sides of a substrate. A protective coating covers the substrate, effectively hermetically sealing the electronic circuitry under the coating. Exposed areas of the electrodes are selectively left uncovered by the protective coating, thereby allowing such electrodes to be exposed to body tissue and fluids when the sensor is implanted in living tissue. The substrate on which the electronic circuitry and electrodes are formed is the same substrate or “chip” on which an integrated circuit (IC) is formed, which integrated circuit contains the desired electronic circuitry. Such approach eliminates the need for an hermetically sealed lid or cover to cover hybrid electronic circuitry, and allows the sensor to be made much thinner than would otherwise be possible. In one embodiment, two such substrate sensors may be placed back-to-back, with the electrodes facing outward.
    Type: Grant
    Filed: June 19, 1998
    Date of Patent: July 10, 2001
    Assignee: Alfred E. Mann Foundation
    Inventors: Joseph H. Schulman, Charles L. Byers, John C. Gord, Rajiv Shah, Lyle Dean Canfield
  • Patent number: 6238365
    Abstract: Disclosed is a device for insufflating gas into a corporal cavity of a human or animal body having a connection for a gas source, a measuring unit provided with sensors for the fill gas pressure and the fill gas flow, which are disposed outside said corporal cavity, and a control unit, to which the output signal of the sensors are applied, and which triggers a pressure regulator which reduces or regulates the fill pressure of the gas source to an insufflation pressure (desired gas pressure), which can be set, and a flow regulator which regulates the fill gas flow to a value (desired gas flow), which can be set.
    Type: Grant
    Filed: February 5, 1999
    Date of Patent: May 29, 2001
    Assignee: Storz Endoscope GmbH
    Inventors: John C. Gord, Eric M. Jones, Jürgen Kraft-Kivikoski