Patents by Inventor John C. Harlan

John C. Harlan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240115725
    Abstract: The present disclosure relates to anti-Epidermal Growth Factor Receptor (EGFR) antibody drug conjugates (ADCs) which inhibit Bcl-xL, including compositions and methods using such ADCs, and methods for making such ADCs.
    Type: Application
    Filed: November 10, 2023
    Publication date: April 11, 2024
    Inventors: Erwin R. Boghaert, Andrew C. Phillips, Andrew J. Souers, Kamel Izeradjene, John E. Harlan
  • Patent number: 7582992
    Abstract: Electromechanical systems utilizing suspended conducting nanometer-scale beams are provided and may be used in applications, such as, motors, generators, pumps, fans, compressors, propulsion systems, transmitters, receivers, heat engines, heat pumps, magnetic field sensors, kinetic energy storage devices and accelerometers. Such nanometer-scale beams may be provided as, for example, single molecules, single crystal filaments, or nanotubes. When suspended by both ends, these nanometer-scale beams may be caused to rotate about their line of suspension, similar to the motion of a jumprope (or a rotating whip), via electromagnetic or electrostatic forces. This motion may be used, for example, to accelerate molecules of a working substance in a preferred direction, generate electricity from the motion of a working substance molecules, or generate electromagnetic signals. Means of transmitting and controlling currents through these beams are also described.
    Type: Grant
    Filed: February 9, 2007
    Date of Patent: September 1, 2009
    Assignee: CJP IP Holdings, Ltd.
    Inventors: Joseph F. Pinkerton, John C. Harlan
  • Patent number: 7495350
    Abstract: Nanoelectromechanical systems utilizing nanometer-scale assemblies are provided that convert thermal energy into another form of energy that can be used to perform useful work at macroscopic level. Nanometer-scale beams are provided that reduce the velocity of working substance molecules that collide with this nanometer-scale beam by converting some of the kinetic energy of a colliding molecule into kinetic energy of the nanometer-scale beam. In embodiments that operate without a working substance, the thermal vibrations of the beam itself create the necessary beam motion. Automatic switches may be added to realize a regulator such that the nanometer-scale beams only deliver voltages that exceed a particular amount. The output energy of millions of these devices may be efficiently summed together.
    Type: Grant
    Filed: September 28, 2006
    Date of Patent: February 24, 2009
    Assignee: CJP IP Holdings, Ltd.
    Inventors: Joseph F. Pinkerton, John C Harlan
  • Patent number: 7256063
    Abstract: Nanoelectromechanical switch systems (NEMSS) that are structured around the mechanical manipulation of nanotubes are provided. Such NEMSS can realize the functionality of, for example, automatic switches, adjustable diodes, amplifiers, inverters, variable resistors, pulse position modulators (PPMs), and transistors. In one embodiment, a nanotube is anchored at one end to a base member. The nanotube is also coupled to a voltage source. This voltage source creates an electric charge at the tip of the free-moving-end of the nanotube that is representative of the polarity and intensity of the voltage source. The free-moving end of this nanotube can be electrically controlled by applying an electric charge to a nearby charge member layer that is either of the same (repelling) or opposite (attracting) polarity of the nanotube.
    Type: Grant
    Filed: July 7, 2004
    Date of Patent: August 14, 2007
    Assignee: Ambient Systems, Inc.
    Inventors: Joseph F. Pinkerton, John C. Harlan, Jeffrey D. Mullen
  • Patent number: 7199498
    Abstract: Electromechanical systems utilizing suspended conducting nanometer-scale beams are provided and may be used in applications, such as, motors, generators, pumps, fans, compressors, propulsion systems, transmitters, receivers, heat engines, heat pumps, magnetic field sensors, kinetic energy storage devices and accelerometers. Such nanometer-scale beams may be provided as, for example, single molecules, single crystal filaments, or nanotubes. When suspended by both ends, these nanometer-scale beams may be caused to rotate about their line of suspension, similar to the motion of a jumprope (or a rotating whip), via electromagnetic or electrostatic forces. This motion may be used, for example, to accelerate molecules of a working substance in a preferred direction, generate electricity from the motion of a working substance molecules, or generate electromagnetic signals. Means of transmitting and controlling currents through these beams are also described.
    Type: Grant
    Filed: June 2, 2003
    Date of Patent: April 3, 2007
    Assignee: Ambient Systems, Inc.
    Inventors: Joseph F. Pinkerton, John C. Harlan
  • Patent number: 7196450
    Abstract: Electromechanical systems utilizing suspended conducting nanometer-scale beams are provided and may be used in applications, such as, motors, generators, pumps, fans, compressors, propulsion systems, transmitters, receivers, heat engines, heat pumps, magnetic field sensors, kinetic energy storage devices and accelerometers. Such nanometer-scale beams may be provided as, for example, single molecules, single crystal filaments, or nanotubes. When suspended by both ends, these nanometer-scale beams may be caused to rotate about their line of suspension, similar to the motion of a jumprope (or a rotating whip), via electromagnetic or electrostatic forces. This motion may be used, for example, to accelerate molecules of a working substance in a preferred direction, generate electricity from the motion of a working substance molecules, or generate electromagnetic signals. Means of transmitting and controlling currents through these beams are also described.
    Type: Grant
    Filed: April 12, 2005
    Date of Patent: March 27, 2007
    Assignee: Ambient Systems, Inc.
    Inventors: Joseph F Pinkerton, John C Harlan
  • Patent number: 7148579
    Abstract: Nanoelectromechanical systems utilizing nanometer-scale assemblies are provided that convert thermal energy into another form of energy that can be used to perform useful work at a macroscopic level. These systems may be used to, for example, produce useful quantities of electric or mechanical energy, heat or cool an external substance or propel an object in a controllable direction. In particular, the present invention includes nanometer-scale beams that reduce the velocity of working substance molecules that collide with this nanometer-scale beam by converting some of the kinetic energy of a colliding molecule into kinetic energy of the nanometer-scale beam. In embodiments that operate without a working substance, the thermal vibrations of the beam itself create the necessary beam motion. In some embodiments, an automatic switch is added to realize a regulator such that the nanometer-scale beams only deliver voltages that exceed a particular amount.
    Type: Grant
    Filed: June 2, 2003
    Date of Patent: December 12, 2006
    Assignee: Ambient Systems, Inc.
    Inventors: Joseph F. Pinkerton, John C. Harlan
  • Publication number: 20040239210
    Abstract: Electromechanical systems utilizing suspended conducting nanometer-scale beams are provided and may be used in applications, such as, motors, generators, pumps, fans, compressors, propulsion systems, transmitters, receivers, heat engines, heat pumps, magnetic field sensors, kinetic energy storage devices and accelerometers. Such nanometer-scale beams may be provided as, for example, single molecules, single crystal filaments, or nanotubes. When suspended by both ends, these nanometer-scale beams may be caused to rotate about their line of suspension, similar to the motion of a jumprope (or a rotating whip), via electromagnetic or electrostatic forces.
    Type: Application
    Filed: June 2, 2003
    Publication date: December 2, 2004
    Inventors: Joseph F. Pinkerton, John C. Harlan
  • Publication number: 20040239119
    Abstract: Nanoelectromechanical systems utilizing nanometer-scale assemblies are provided that convert thermal energy into another form of energy that can be used to perform useful work at a macroscopic level. These systems may be used to, for example, produce useful quantities of electric or mechanical energy, heat or cool an external substance or propel an object in a controllable direction. In particular, the present invention includes nanometer-scale beams that reduce the velocity of working substance molecules that collide with this nanometer-scale beam by converting some of the kinetic energy of a colliding molecule into kinetic energy of the nanometer-scale beam. In embodiments that operate without a working substance, the thermal vibrations of the beam itself create the necessary beam motion. In some embodiments, an automatic switch is added to realize a regulator such that the nanometer-scale beams only deliver voltages that exceed a particular amount.
    Type: Application
    Filed: June 2, 2003
    Publication date: December 2, 2004
    Inventors: Joseph F. Pinkerton, John C. Harlan
  • Publication number: 20040238907
    Abstract: Nanoelectromechanical switch systems (NEMSS) are provided that utilize the mechanical manipulation of nanotubes. Such NEMSS may realize the functionality of, for example, automatic switches, adjustable diodes, amplifiers, inverters, variable resistors, pulse position modulators (PPMs), and transistors. In one embodiment, a nanotube is anchored at one end to a base member and coupled to a voltage source that creates an electric charge at the tip of the nanotube's free-moving-end This free-moving end may be electrically controlled by applying an additional electric charge, having the same (repelling) or opposite (attracting) polarity as the nanotube, to a nearby charge member layer. A contact layer is located in the proximity of the free-moving end such that when a particular electric charge is provided to the nanotube (or charge member layer), the nanotube electrically couples with the contact layer.
    Type: Application
    Filed: June 2, 2003
    Publication date: December 2, 2004
    Inventors: Joseph F. Pinkerton, John C. Harlan, Jeffrey D. Mullen