Patents by Inventor John C. Holst

John C. Holst has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8547155
    Abstract: A latch device and related layout techniques are provided to reduce soft error rates caused by radiation or other exposure to ionized/charged particles. The latch device comprises a pair of cross-coupled inverters forming a storage cell. A pair of clock pass transistors is coupled to the pair of cross-coupled inverters. The pair of clock pass transistors is configured to receive as input a clock signal. On both true and complement sides of the latch device, a channel-connected region is formed between one of the pair of cross-coupled inverters and one of the pair of clock pass transistors. Each channel-connected region is configured to have a reduced Linear Energy Transfer (LET) cross-section. The reduced LET cross-section results in a reduced soft error rate.
    Type: Grant
    Filed: August 22, 2011
    Date of Patent: October 1, 2013
    Assignee: Cisco Technology, Inc.
    Inventors: John C. Holst, ShiJie Wen, Richard J. Wong
  • Publication number: 20130049835
    Abstract: A latch device and related layout techniques are provided to reduce soft error rates caused by radiation or other exposure to ionized/charged particles. The latch device comprises a pair of cross-coupled inverters forming a storage cell. A pair of clock pass transistors is coupled to the pair of cross-coupled inverters. The pair of clock pass transistors is configured to receive as input a clock signal. On both true and complement sides of the latch device, a channel-connected region is formed between one of the pair of cross-coupled inverters and one of the pair of clock pass transistors. Each channel-connected region is configured to have a reduced Linear Energy Transfer (LET) cross-section. The reduced LET cross-section results in a reduced soft error rate.
    Type: Application
    Filed: August 22, 2011
    Publication date: February 28, 2013
    Applicant: CISCO TECHNOLOGY, INC.
    Inventors: John C. Holst, ShiJie Wen, Richard J. Wong
  • Patent number: 8270399
    Abstract: A router including a lookup execution unit including a plurality of stages, a forwarding table memory arranged in hierarchy including addressable sectors, blocks, and entries, and a crossbar having an address crossbar for selectively coupling one of the plurality of stages to a sector of the memory so that data from the sector can be read. In one example, any one of the stages of the plurality of stages may be selectively and dynamically coupled with any one of the sectors of the forwarding table memory for providing an address to a particular sector of the memory to read data therefrom.
    Type: Grant
    Filed: October 29, 2008
    Date of Patent: September 18, 2012
    Assignee: Cisco Technology, Inc.
    Inventors: John C. Holst, William L. Lynch
  • Publication number: 20090063702
    Abstract: A router including a lookup execution unit including a plurality of stages, a forwarding table memory arranged in hierarchy including addressable sectors, blocks, and entries, and a crossbar having an address crossbar for selectively coupling one of the plurality of stages to a sector of the memory so that data from the sector can be read. In one example, any one of the stages of the plurality of stages may be selectively and dynamically coupled with any one of the sectors of the forwarding table memory for providing an address to a particular sector of the memory to read data therefrom.
    Type: Application
    Filed: October 29, 2008
    Publication date: March 5, 2009
    Applicant: Cisco Technology, Inc.
    Inventors: John C. Holst, William L. Lynch
  • Patent number: 7450438
    Abstract: A router including a lookup execution unit including a plurality of stages, a forwarding table memory arranged in hierarchy including addressable sectors, blocks, and entries, and a crossbar having an address crossbar for selectively coupling one of the plurality of stages to a sector of the memory so that data from the sector can be read. In one example, any one of the stages of the plurality of stages may be selectively and dynamically coupled with any one of the sectors of the forwarding table memory for providing an address to a particular sector of the memory to read data therefrom.
    Type: Grant
    Filed: April 17, 2003
    Date of Patent: November 11, 2008
    Assignee: Cisco Technology, Inc.
    Inventors: John C. Holst, William L. Lynch
  • Patent number: 7026691
    Abstract: A method for fabricating a field effect transistor (FET) in and on a semiconductor substrate with local interconnects to permit the formation of minimal space between gate and the local interconnects by fabricating the source and drain of the FET and the local interconnects prior to forming the gate of the FET.
    Type: Grant
    Filed: April 25, 2001
    Date of Patent: April 11, 2006
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Craig S. Sander, Rich K. Klein, Asim A. Selcuk, Nicholas J. Kepler, Christoper A. Spence, Raymond T. Lee, John C. Holst, Stephen C. Horne
  • Patent number: 6420767
    Abstract: A transistor structure is provided comprising a source region having a N+ source region and a N− lightly doped source region. The structure also comprises a drain region having a N+ drain region and a N− lightly doped drain region. A P++ heavily doped region is provided. The P++ region resides alongside at least a portion of at least one of the N− lightly doped source region and N− lightly doped drain region. A P+ body region resides below a gate of the device and between the source and drain regions. The P+⇄ heavily doped region provides a capacitive coupling between a body region and the gate of the device and form a capacitive voltage divider with the junction capacitance of the device.
    Type: Grant
    Filed: June 28, 2000
    Date of Patent: July 16, 2002
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Srinath Krishnan, John C. Holst, Bin Yu
  • Patent number: 6376880
    Abstract: A lateral bipolar transistor includes a semiconductor layer overlying an electrically insulating material and an insulating layer overlying a central portion of the semiconductor layer. A contact hole resides in the insulating layer and a conductive material overlies the insulating layer and makes electrical contact with the semiconductor layer through the contact hole, thereby forming a base contact. The semiconductor layer has a first conductivity type in a central region which substantially underlies the conductive material, and has a second conductivity type in regions adjacent the central region. The first region forms a base region and the adjacent regions form a collector region and an emitter region, respectively. A method of forming a lateral bipolar transistor device is also disclosed. The method includes forming a semiconductor layer over an insulating material and forming an insulating layer over the semiconductor material.
    Type: Grant
    Filed: September 27, 1999
    Date of Patent: April 23, 2002
    Assignee: Advanced Micro Devices, Inc.
    Inventor: John C. Holst
  • Patent number: 6287953
    Abstract: A method for fabricating a field effect transistor (FET) in and on a semiconductor substrate with local interconnects to permit the formation of minimal space between gate and the local interconnects by fabricating the source and drain of the FET and the local interconnects prior to forming the gate of the FET.
    Type: Grant
    Filed: February 29, 2000
    Date of Patent: September 11, 2001
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Craig S. Sander, Rich K. Klein, Asim A. Selcuk, Nicholas J. Kepler, Christoper A. Spence, Raymond T. Lee, John C. Holst, Stephen C. Horne
  • Patent number: 6213869
    Abstract: A coupling capacitor is coupled between the gate and the body region of a MOSFET (Metal Oxide Semiconductor Field Effect Transistor). The body region of the MOSFET is electrically isolated to form a floating body region. The capacitance of the coupling capacitor is designed such that a BJT (Bipolar Junction Transistor) connected in parallel with the MOSFET turns on when the MOSFET turns on. In addition such a design of the coupling capacitor lowers the magnitude of the threshold voltage of the MOSFET when the MOSFET is turned on. Furthermore, the capacitance of the coupling capacitor is designed such that the magnitude of the threshold voltage of the MOSFET is raised when the MOSFET is turned off. Thus, the MOSFET type device of the present invention has both higher drive current when the MOSFET is turned on and lower steady state power dissipation when the MOSFET is turned off with a variable threshold voltage.
    Type: Grant
    Filed: May 10, 1999
    Date of Patent: April 10, 2001
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Bin Yu, John C. Holst
  • Patent number: 6191034
    Abstract: A method of forming minimal gaps or spaces in conductive lines pattern for increasing the density of integrated circuits by first forming an opening in an insulating layer overlying the conductive line by conventional optical lithography, followed by forming sidewalls in the opening to create a reduced opening, and using the sidewalls as a mask to remove, preferably by etching, a portion of the conductive line pattern substantially equal in size to the reduced opening.
    Type: Grant
    Filed: April 5, 1999
    Date of Patent: February 20, 2001
    Assignee: Advanced Micro Devices
    Inventors: Richard K. Klein, Asim A. Selcuk, Nicholas J. Kepler, Christopher A. Spence, Raymond T. Lee, John C. Holst, Stephen C. Horne
  • Patent number: 6157244
    Abstract: A temperature sensor is fabricated in an integrated circuit in combination with another device such as a microprocessor using a fabrication technology that is suitable for fabricating the device. Operation of the temperature sensor is based on the bandgap physics of semiconductors using a bandgap reference circuit and an amplifier that generate two measurement voltages, a voltage that is temperature-dependent and a voltage that is temperature-independent. The temperature sensor includes a bandgap power supply circuit that supplies a power supply voltage that is very stable to drive the temperature sensor so that the temperature sensor generates an output signal that is essentially independent of the power supply voltage.
    Type: Grant
    Filed: October 13, 1998
    Date of Patent: December 5, 2000
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Thomas H. Lee, Mark G. Johnson, John C. Holst
  • Patent number: 6153912
    Abstract: An SOI transistor structure and SOI circuit is disclosed. The SOI transistor structure includes a conductive base layer and an insulating layer overlying the conductive base layer. A semiconductor layer overlies the insulating layer and includes a source region and a drain region therein with a channel region disposed therebetween. A conductive gate region overlies generally the channel region of the semiconductor layer. The SOI circuit includes a conductive base layer and an insulating layer overlying the conductive base layer. A semiconductor layer overlies the insulating layer. A first circuit structure and a second circuit structure are formed in a first region and second region of the semiconductor layer, respectively. A conductive contact region extends through the insulating layer and electrically connects at least one of the first circuit structure and the second circuit structure to the conductive base layer.
    Type: Grant
    Filed: October 25, 1999
    Date of Patent: November 28, 2000
    Assignee: Advanced Micro Devices, Inc.
    Inventor: John C. Holst
  • Patent number: 6146954
    Abstract: A method for fabricating a field effect transistor (FET) in and on a semiconductor substrate with local interconnects to permit the formation of minimal insulating space between polysilicon gate and the local interconnects by fabricating the source and drain of the FET and the local interconnects prior to forming the gate of the FET. A portion of an insulating layer between the source and drain is removed prior to forming the gate. Preferably, an etch stop layer on the semiconductor substrate underlying the insulating layer is used in the method.
    Type: Grant
    Filed: July 21, 1998
    Date of Patent: November 14, 2000
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Richard K. Klein, Asim A. Selcuk, Nicholas J. Kepler, Craig S. Sander, Christopher A. Spence, Raymond T. Lee, John C. Holst, Stephen C. Horne
  • Patent number: 6084454
    Abstract: Some logic circuits preferentially reside in a particular state. Advantages are gained by a circuit that forces the circuit to the preferential state but allows the preferred state to be overridden. A node in the logic circuit is driven to a particular state, in one embodiment, by a pull-up transistor connected to a pull-down transistor that respectively drive the node to a high state and a low state. A keeper circuit is connected to the node and drives the node to the preferred state unless overpowered by the pull-up transistor and the pull-down transistor. The keeper circuit drives the node using a transistor that is weaker than the pull-up transistor and weaker than the pull-down transistor. A startup-circuit is connected to the node and drives the node to the preferred state when the node powers-up in the nonpreferred state. The start-up circuit drives the node using a transistor that is weaker than the keeper circuit transistor.
    Type: Grant
    Filed: August 26, 1998
    Date of Patent: July 4, 2000
    Assignee: Advanced Micro Devices, Inc.
    Inventor: John C. Holst
  • Patent number: 6051881
    Abstract: A method and the resulting device to permit the formation of minimal insulating space between polysilicon gates by forming an insulating layer over the polysilicon gates and protecting selected ones of the gates and the insulating layer with an etch barrier so that the opening for local interconnect metallization can be misaligned and the selected gates will be protected by its etch barrier and not be exposed to the opening. Further, local interconnect conductive material can pass over a gate or unrelated resistor without shorting the gate/resistor.
    Type: Grant
    Filed: December 5, 1997
    Date of Patent: April 18, 2000
    Assignee: Advanced Micro Devices
    Inventors: Richard K. Klein, Asim A. Selcuk, Nicholas J. Kepler, Craig S. Sander, Christopher A. Spence, Raymond T. Lee, John C. Holst, Stephen C. Horne
  • Patent number: 6046088
    Abstract: A method of forming field isolation in a semiconductor substrate, such as shallow oxide trenches, for isolation of FET transistors, including complementary FETs such as CMOS, with selected sections of said trenches extending above the substrate and being coplanar with the upper surface of subsequently formed polysilicon gates. An etch protective layer is used during the formation and the filling of the trench openings so that the top of the trenches are coplanar with upper surface of the etch protective layer. Selected sections of the trenches are masked and protected prior to planarization of the non-masked trenches to the bottom edge of the etch protective layer. After deposition and planarization of the poly, the upper surface of a deposited polysilicon layer for forming polysilicon gates of FET transistors is coplanar and self-aligned with the upwardly extending selected sections of the field isolation trenches.
    Type: Grant
    Filed: December 5, 1997
    Date of Patent: April 4, 2000
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Richard K. Klein, Asim A. Selcuk, Nicholas J. Kepler, Craig S. Sander, Christopher A. Spence, Raymond T. Lee, John C. Holst, Stephen C. Horne
  • Patent number: 5959467
    Abstract: The present invention discloses a differential logic circuit and sensing method providing differential sensing with greater speed and higher density than prior art techniques. One or more input signals are provided to a logic array and two output signals are produced from the logic array wherein one output signal of the logic array is a bit-line and one output signal of the logic array is a bit-bar-line as a reference signal, wherein both signals are provided as input signals to a differential sense amplifier having a binary output signal. The bit-line and the bit-bar-line are precharged to the same voltage level and a controlled input source-grounded transistor having less than fill drive strength is coupled to the bit-bar-line. A source-grounded transistor is coupled to each input signal of the logic array and is programmable to the bit-line by coupling the drain of the source-grounded transistor to the bit-line.
    Type: Grant
    Filed: September 26, 1997
    Date of Patent: September 28, 1999
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Joseph G. Nolan, III, John C. Holst, Donald A. Draper
  • Patent number: 5930659
    Abstract: A method of forming minimal gaps or spaces in a polysilicon conductive lines pattern for increasing the density of integrated circuits by converting an area of the size of the desired gap or space in the polysilicon to silicon oxide, followed by removing the silicon oxide. The preferred method is to selectively ion implant oxygen into the polysilicon and annealing to convert the oxygen implanted polysilicon to silicon oxide. As an alternative method, an opening in an insulating layer overlying the conductive line is first formed by conventional optical lithography, followed by forming sidewalls in the opening to create a reduced opening and using the sidewalls as a mask to blanket implant oxygen through the reduced opening and into the exposed polysilicon conductive line. After annealing, the implanted polysilicon converted to silicon oxide and removed to form a gap or space in the polysilicon conductive line pattern substantially equal in size to the reduced opening.
    Type: Grant
    Filed: December 5, 1997
    Date of Patent: July 27, 1999
    Assignee: Advanced MicroDevices, Inc.
    Inventors: Richard K. Klein, Asim A. Selcuk, Nicholas J. Kepler, Christopher A. Spence, Raymond T. Lee, John C. Holst, Stephen C. Horne
  • Patent number: 5920515
    Abstract: A semiconductor memory array with Built-in Self-Repair (BISR) includes redundancy circuits associated with failed row address stores to drive redundant row word lines, thereby obviating the supply and normal decoding of a substitute addresses. NOT comparator logic compares a failed row address generated and stored by BISR circuits to a row address supplied to the memory array. A TRUE comparator configured in parallel with the NOT comparator simultaneously compares defective row address signal to the supplied row address. Since NOT comparison is performed quickly in dynamic logic without setup and hold time constraints, timing impact on a normal (non-redundant) row decode path is negligible, and since TRUE comparison, though potentially slower than NOT comparison, itself identifies a redundant row address and therefore need not employ an N-bit address to selected word-line decode, redundant row addressing is rapid and does not adversely degrade performance of a self-repaired semiconductor memory array.
    Type: Grant
    Filed: September 26, 1997
    Date of Patent: July 6, 1999
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Imtiaz P. Shaik, Dennis L. Wendell, Benjamin S. Wong, John C. Holst, Donald A. Draper, Amos Ben-Meir, John G. Favor