Patents by Inventor John C. Maters

John C. Maters has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8555653
    Abstract: Embodiments of the present invention employ a closed loop controls philosophy, which actively controls the starting means of a powerplant machine, throughout the start-up process. Here, the present invention may provide a method for adjusting a nominal operating schedule of the starting means, which may have the form of a Load Commutated Inverter (LCI). Embodiments of the method may adjust the nominal operating schedule based, in part, on an operating parameter, which is associated with the gas turbine 100. The operating parameter may include, but is not limited to: a rotor speed, a desired start-up time, or the like. Here, the control system may receive data on the operating parameter associated with the gas turbine.
    Type: Grant
    Filed: December 23, 2009
    Date of Patent: October 15, 2013
    Assignee: General Electric Company
    Inventors: David A. Snider, William F. Seely, John C. Maters, Eugene A. Post, Samuel B. Shartzer
  • Patent number: 8479522
    Abstract: The present invention has the technical effect of reducing the start-up time associated with starting a powerplant machine. An embodiment of the present invention provides a method of starting a powerplant machine, such as, but not limiting of, a turbomachine. An embodiment of the method of the present invention provides a new philosophy for starting a turbomachine. This new philosophy involves testing the turbomachine systems before the start-up process begins.
    Type: Grant
    Filed: December 23, 2009
    Date of Patent: July 9, 2013
    Assignee: General Electric Company
    Inventors: Valerie S. Vernet, Michael J. Alexander, John C. Maters, Kelly M. Graf, Jason D. Fuller
  • Patent number: 8145403
    Abstract: A method and algorithm are provided to operate a gas turbine at baseload in an emission compliant capable mode to avoid combustion dynamics while operating with cold fuel and hot fuel combustion hardware. The method includes performing a gas turbine operational sequence such as a startup to an emission compliant capable mode. A gas fuel temperature is measured. The gas turbine is operated in the emissions compliant capable mode according to a designated fuel split for avoiding combustion dynamics when a temperature for a gas fuel is below a designated value. A determination is made whether a modified wobbe index for the gas fuel is below an emissions compliant value. An alarm is activated if the modified wobbe index is below the emissions compliant value to notify the operator of a potential emissions shift.
    Type: Grant
    Filed: December 31, 2008
    Date of Patent: March 27, 2012
    Assignee: General Electric Company
    Inventors: Jason D. Fuller, Garth C. Frederick, John C. Maters, Douglas C. Morgan, Luls M. Flamand
  • Publication number: 20110146290
    Abstract: The present invention has the technical effect of reducing the start-up time associated with starting a powerplant machine. An embodiment of the present invention provides a method of starting a powerplant machine, such as, but not limiting of, a turbomachine. An embodiment of the method of the present invention provides a new philosophy for starting a turbomachine. This new philosophy involves testing the turbomachine systems before the start-up process begins.
    Type: Application
    Filed: December 23, 2009
    Publication date: June 23, 2011
    Inventors: Valerie S. Vernet, Michael J. Alexander, John C. Maters, Kelly M. Graf, Jason D. Fuller
  • Publication number: 20110146291
    Abstract: Embodiments of the present invention employ a closed loop controls philosophy, which actively controls the starting means of a powerplant machine, throughout the start-up process. Here, the present invention may provide a method for adjusting a nominal operating schedule of the starting means, which may have the form of a Load Commutated Inverter (LCI). Embodiments of the method may adjust the nominal operating schedule based, in part, on an operating parameter, which is associated with the gas turbine 100. The operating parameter may include, but is not limited to: a rotor speed, a desired start-up time, or the like. Here, the control system may receive data on the operating parameter associated with the gas turbine.
    Type: Application
    Filed: December 23, 2009
    Publication date: June 23, 2011
    Inventors: David A. Snider, William F. Seely, John C. Maters, Eugene A. Post, Samuel B. Shartzer
  • Patent number: 7915868
    Abstract: An embodiment of the present invention may seek to match the generator and grid voltages before the powerplant machine reaches the grid matching speed during the start-up process. An embodiment of the present invention may provide a predictive algorithm, or the like, to control the acceleration rate of the powerplant machine to target a particular phase angle differential between the powerplant machine and the grid when the powerplant machine reaches the grid matching speed. Here, the phase angle difference may be targeted such that a generator breaker may be closed immediately after the powerplant machine accelerates beyond the grid matching speed. This may avoid the generator experiencing a phase angle differential, which may add to the power transient associated with the generator breaker closure.
    Type: Grant
    Filed: December 23, 2009
    Date of Patent: March 29, 2011
    Assignee: General Electric Company
    Inventors: John C. Maters, John N. Cunningham
  • Publication number: 20100168980
    Abstract: A method and algorithm are provided to operate a gas turbine at baseload in an emission compliant capable mode to avoid combustion dynamics while operating with cold fuel and hot fuel combustion hardware. The method includes performing a gas turbine operational sequence such as a startup to an emission compliant capable mode. A gas fuel temperature is measured. The gas turbine is operated in the emissions compliant capable mode according to a designated fuel split for avoiding combustion dynamics when a temperature for a gas fuel is below a designated value. A determination is made whether a modified wobbe index for the gas fuel is below an emissions compliant value. An alarm is activated if the modified wobbe index is below the emissions compliant value to notify the operator of a potential emissions shift.
    Type: Application
    Filed: December 31, 2008
    Publication date: July 1, 2010
    Inventors: Jason D. Fuller, Garth C. Frederick, John C. Maters, Douglas C. Morgan, Luls M. Flamand
  • Publication number: 20090145104
    Abstract: A combined cycle (CC) power plant comprises a gas turbine; a steam turbine; a condenser; a heat recovery steam generator (HRSG), the HRSG comprising an attemperator and a high pressure superheater and attemperator, the high pressure superheater and attemperator disposed at a discharge terminal of the high pressure superheater and attemperator and at a discharge terminal of the HRSG reheater; a generator, and a fuel supply. The steam turbine is connected by multiple conduits to the heat recovery steam generator (HRSG) and the steam turbine exhaust is connected to the condenser wherein support multiple ancillary and reserves to load follow, execute regulation, and meet intermediate power generation service needs in an expedited start process.
    Type: Application
    Filed: December 10, 2008
    Publication date: June 11, 2009
    Inventors: Michael J. Alexander, Mark S. Schroder, Bradley D. Crawley, Gordon R. Smith, Mark J. Steffen, John C. Maters, David A. Snider