Patents by Inventor John C. Murphy

John C. Murphy has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240115804
    Abstract: A pump for pumping fluid includes a tube platen, a plunger, a bias member, inlet and outlet valves, an actuator mechanism, a position sensor, and a processor. The plunger is configured for actuation toward and away from the infusion-tube when the tube platen is disposed opposite to the plunger. The tube platen can hold an intravenous infusion tube. The bias member is configured to urge the plunger toward the tube platen.
    Type: Application
    Filed: October 10, 2023
    Publication date: April 11, 2024
    Inventors: Dean KAMEN, John M. Kerwin, Colin H. Murphy, Jonathan Parker, Daniel F. Pawlowski, Dirk A. Van Der Merwe, Larry B. Gray, Christopher C. Langenfeld, Michael S Place, Michael J. Slate
  • Patent number: 11944130
    Abstract: A vaporizer device includes various modular components. The vaporizer device includes a first subassembly. The first subassembly includes a cartridge connector that secures a vaporizer cartridge to the vaporizer device and includes at least two receptacle contacts that electrically communicate with the vaporizer cartridge. The vaporizer device includes a second subassembly. The second subassembly includes a skeleton defining a rigid tray that retains at least a power source. The vaporizer device also includes a third subassembly. The third subassembly includes a plurality of charging contacts that supply power to the power source, and an end cap that encloses an end of the vaporizer device.
    Type: Grant
    Filed: December 24, 2020
    Date of Patent: April 2, 2024
    Assignee: JUUL Labs, Inc.
    Inventors: Samuel C. Anderson, Wei-Ling Chang, Brandon Cheung, Steven Christensen, Joseph Chun, Joseph R. Fisher, Jr., Nicholas J. Hatton, Kevin Lomeli, James Monsees, Andrew L. Murphy, Claire O'Malley, John R. Pelochino, Hugh Pham, Vipul V. Rahane, Matthew J. Taschner, Val Valentine, Kenneth Wong
  • Patent number: 8078262
    Abstract: The present invention relates to methods of passive infrared imaging and dynamic infrared imaging of a tumor or lesion (“DIR”) where multiple images are taken before, during and after heating or cooling the tumor or lesion. Patterns of intensity of infrared emission in the infrared image(s) are related to the level of vascularity or metabolic activity of the tumor or lesion, and are used to identify size and shape of the tumor or lesion. The patterns can also be used to determine whether Kaposi's sarcoma lesions, skin cancer lesions and melanomas are active or inactive. Changes in the patterns of infrared emission determined by comparing images taken before, during and after the onset of drug or radiation therapy, are used to assess efficacy of the therapy. The methods can also be used to study tissue affected by angiogenic diseases.
    Type: Grant
    Filed: April 15, 2002
    Date of Patent: December 13, 2011
    Assignee: The Johns Hopkins University
    Inventors: John C Murphy, Jerry R. Williams, Robert Osiander
  • Patent number: 7653429
    Abstract: Techniques for detecting fluorescence emitted by molecular constituents in a wall of a body lumen include introducing an autonomous solid support into the body lumen. Cells in a lumen wall of the body lumen are illuminated by a light source mounted to the solid support with a wavelength that excites a particular fluorescent signal. A detector mounted to the solid support detects whether illuminated cells emit the particular fluorescent signal. If the particular fluorescent signal is detected from the illuminated cells, then intensity or position in the lumen wall of the detected fluorescent signal, or both, is determined. These techniques allow the information collected by the capsule to support diagnosis and therapy of GI cancer and other intestinal pathologies and syndromes. For example, these techniques allow diagnostic imaging using endogenous and exogenous fluoroprobes, treating diseased sites by targeted release of drug with or without photoactivation, and determining therapeutic efficacy.
    Type: Grant
    Filed: October 16, 2008
    Date of Patent: January 26, 2010
    Assignee: The Johns Hopkins University
    Inventors: Igal Madar, John C. Murphy
  • Patent number: 7515953
    Abstract: Techniques for detecting fluorescence emitted by molecular constituents in a wall of a body lumen include introducing an autonomous solid support into the body lumen. Cells in a lumen wall of the body lumen are illuminated by a light source mounted to the solid support with a wavelength that excites a particular fluorescent signal. A detector mounted to the solid support detects whether illuminated cells emit the particular fluorescent signal. If the particular fluorescent signal is detected from the illuminated cells, then intensity or position in the lumen wall of the detected fluorescent signal, or both, is determined. These techniques allow the information collected by the capsule to support diagnosis and therapy of GI cancer and other intestinal pathologies and syndromes. For example, these techniques allow diagnostic imaging using endogenous and exogenous fluoroprobes, treating diseased sites by targeted release of drug with or without photoactivation, and determining therapeutic efficacy.
    Type: Grant
    Filed: August 1, 2003
    Date of Patent: April 7, 2009
    Assignee: The Johns Hopkins University
    Inventors: Igal Madar, John C. Murphy
  • Publication number: 20090035222
    Abstract: Techniques for detecting fluorescence emitted by molecular constituents in a wall of a body lumen include introducing an autonomous solid support into the body lumen. Cells in a lumen wall of the body lumen are illuminated by a light source mounted to the solid support with a wavelength that excites a particular fluorescent signal. A detector mounted to the solid support detects whether illuminated cells emit the particular fluorescent signal. If the particular fluorescent signal is detected from the illuminated cells, then intensity or position in the lumen wall of the detected fluorescent signal, or both, is determined. These techniques allow the information collected by the capsule to support diagnosis and therapy of GI cancer and other intestinal pathologies and syndromes. For example, these techniques allow diagnostic imaging using endogenous and exogenous fluoroprobes, treating diseased sites by targeted release of drug with or without photoactivation, and determining therapeutic efficacy.
    Type: Application
    Filed: October 16, 2008
    Publication date: February 5, 2009
    Inventors: Igal Madar, John C. Murphy
  • Publication number: 20040243021
    Abstract: A device operable to assess temperature response of small neural fibers. The device includes a heat source. A skin contacting probe tip that includes at least one skin contacting region is operatively connected to the heat source and operable to apply a heat to regions of skin having varying surface areas. A temperature sensor is arranged in the vicinity of the probe tip and is operable to detect a temperature of the probe tip. A controller is operatively connected to the heat source and the temperature sensor to maintain a target temperature of the probe tip.
    Type: Application
    Filed: May 5, 2004
    Publication date: December 2, 2004
    Inventors: John C. Murphy, Rafal P Szczepanowski, Wolfger Schneider, Richard A Meyer, Justin C McArthur, Michael Polydefkis
  • Publication number: 20040236225
    Abstract: The present invention relates to methods of passive infrared imaging and dynamic infrared imaging of a tumor or lesion (“DIR”) where multiple images are taken before, during and after heating or cooling the tumor or lesion. Patterns of intensity of infrared emission in the infrared image(s) are related to the level of vascularity or metabolic activity of the tumor or lesion, and are used to identify size and shape of the tumor or lesion. The patterns can also be used to determine whether Kaposi's sarcoma lesions, skin cancer lesions and melanomas are active or inactive. Changes in the patterns of infrared emission determined by comparing images taken before, during and after the onset of drug or radiation therapy, are used to assess efficacy of the therapy. The methods can also be used to study tissue affected by angiogenic diseases.
    Type: Application
    Filed: June 14, 2004
    Publication date: November 25, 2004
    Inventors: John C. Murphy, Jerry R. Williams, Robert Oslander
  • Patent number: 6812696
    Abstract: A Lorentz Force magnetometer based on a mechanical resonator including a resonant, vibrating electrically conducting string or insulating fiber coated with an electrically conducting material and its response to a Lorentz Force wherein the string or fiber, fixed at two ends, is tensioned over two frets (supports) separated by a distance, L, hence, becoming mechanically resonant with high Q. The frets constrain the position of the string or fiber but not the angle it makes with the fret, thus, permitting measurement of multiple vector magnetic fields. The magnetometer can be easily manufactured in arrays with the tension and, hence, resonant frequency for each magnetometer being rapidly, sequentially, and dynamically varied through the use of, e.g., piezo/MEMS elements. If the fiber is light conducting, a compact and sensitive detector using light escaping from an aperature in the conducting material coating the fiber can be implemented.
    Type: Grant
    Filed: March 21, 2001
    Date of Patent: November 2, 2004
    Assignee: The Johns Hopkins University
    Inventor: John C. Murphy
  • Publication number: 20040092825
    Abstract: Techniques for detecting fluorescence emitted by molecular constituents in a wall of a body lumen include introducing an autonomous solid support into the body lumen. Cells in a lumen wall of the body lumen are illuminated by a light source mounted to the solid support with a wavelength that excites a particular fluorescent signal. A detector mounted to the solid support detects whether illuminated cells emit the particular fluorescent signal. If the particular fluorescent signal is detected from the illuminated cells, then intensity or position in the lumen wall of the detected fluorescent signal, or both, is determined. These techniques allow the information collected by the capsule to support diagnosis and therapy of GI cancer and other intestinal pathologies and syndromes. For example, these techniques allow diagnostic imaging using endogenous and exogenous fluoroprobes, treating diseased sites by targeted release of drug with or without photoactivation, and determining therapeutic efficacy.
    Type: Application
    Filed: August 1, 2003
    Publication date: May 13, 2004
    Inventors: Igal Madar, John C. Murphy
  • Patent number: 6517519
    Abstract: The present invention is a device and method for gaining access, quickly and inexpensively, to a body cavity for the purpose of inserting into the cavity a medical device, such as a chest tube. The device generally comprises a catheter and a cannula insertable into the catheter during an insertion procedure. The cannula has a cutting tip that extends beyond one end of the catheter. The cutting tip enables simple insertion of the device into the body without requiring substantial pushing force. Once the device is inserted in the body, the cannula is removed, leaving a path of entry into the body cavity, while removing the sharp cutting tip from the area to reduce the likelihood of injury to a patient in whom the device is inserted.
    Type: Grant
    Filed: August 11, 2000
    Date of Patent: February 11, 2003
    Assignee: The Johns Hopkins University
    Inventors: Ron S. Rosen, John C. Murphy, Christopher Graham
  • Patent number: 6422741
    Abstract: Nondestructive/noncontact evaluation of a material for electrical and magnetic property discontinuities, e.g., a dielectric loss or the presence of a conducting contaminant, is accomplished by using microwaves to heat microwave-absorbing regions of the material caused by such discontinuities; monitoring the change in temperature of the material's surface due to the heating of the microwave-absorbing region as a function of time; and detecting the electrical and magnetic property discontinuities, e.g., the dielectric loss or the conducting contaminant, using the change in the material's surface temperature.
    Type: Grant
    Filed: January 29, 2001
    Date of Patent: July 23, 2002
    Assignee: The Johns Hopkins University
    Inventors: John C. Murphy, Robert Osiander, Jane W. Maclachlan Spicer
  • Publication number: 20020018510
    Abstract: The use of TRIR as an inspection method in composite manufacture and in embedded-sensor concepts is disclosed. Detection methods using time-resolved microwave thermoreflectometry and time-resolved shearography with TRIR are also disclosed.
    Type: Application
    Filed: August 16, 2001
    Publication date: February 14, 2002
    Inventors: John C. Murphy, Jane W.M. Spicer, Robert Osiander
  • Patent number: 6337627
    Abstract: The invention describes methods for locating a treatment device disposed within a living body by means of magnetic fields that are produced by Barkhausen jumps, principally from amorphous tag wires with high permeability that exhibit reentrant flux reversal. When wires of this type are attached to concealed treatment devices such as catheters, interrogation or scanning of the tag wire by a low frequency ac magnetic field affords an accurate means for locating the treatment devices using a sensor coil to detect the magnetic field signal from the wire locating tag. The strength of the field detected by the position of a sensor coil with respect to the locator tag is used to determine the location of the tag. A favorable signal to noise detection ration is obtained as the signal emitted by the wire is at a very high frequency compared to that of the frequency of the interrogation field.
    Type: Grant
    Filed: October 27, 2000
    Date of Patent: January 8, 2002
    Assignee: International Business Machines Corporation
    Inventors: Robert J. Von Gutfeld, James F. Ziegler, Scott J. McAllister, James H. Anderson, John C. Murphy, Matthias D. Ziegler
  • Publication number: 20010035750
    Abstract: A Lorentz Force magnetometer based on a mechanical resonator including a resonant, vibrating electrically conducting string or insulating fiber coated with an electrically conducting material and its response to a Lorentz Force wherein the string or fiber, fixed at two ends, is tensioned over two frets (supports) separated by a distance, L, hence, becoming mechanically resonant with high Q. The frets constrain the position of the string or fiber but not the angle it makes with the fret, thus, permitting measurement of multiple vector magnetic fields. The magnetometer can be easily manufactured in arrays with the tension and, hence, resonant frequency for each magnetometer being rapidly, sequentially, and dynamically varied through the use of, e.g., piezo/MEMS elements. If the fiber is light conducting, a compact and sensitive detector using light escaping from an aperature in the conducting material coating the fiber can be implemented.
    Type: Application
    Filed: March 21, 2001
    Publication date: November 1, 2001
    Inventor: John C. Murphy
  • Publication number: 20010007571
    Abstract: Nondestructive/noncontact evaluation of a material for electrical and magnetic property discontinuities, e.g., a dielectric loss or the presence of a conducting contaminant, is accomplished by using microwaves to heat microwave-absorbing regions of the material caused by such discontinuities; monitoring the change in temperature of the material's surface due to the heating of the microwave-absorbing region as a function of time; and detecting the electrical and magnetic property discontinuities, e.g., the dielectric loss or the conducting contaminant, using the change in the material's surface temperature.
    Type: Application
    Filed: January 29, 2001
    Publication date: July 12, 2001
    Inventors: John C. Murphy, Robert Osiander, Jane W. Maclachlan Spicer
  • Patent number: 6183126
    Abstract: Nondestructive/noncontact evaluation of a material for electrical and magnetic property discontinuities, e.g., a dielectric loss or the presence of a conducting contaminant, is accomplished by using microwaves to heat microwave-absorbing regions of the material caused by such discontinuities; monitoring the change in temperature of the material's surface due to the heating of the microwave-absorbing region as a function of time; and detecting the electrical and magnetic property discontinuities, e.g., the dielectric loss or the conducting contaminant, using the change in the material's surface temperature.
    Type: Grant
    Filed: July 1, 1997
    Date of Patent: February 6, 2001
    Assignee: The John Hopkins University
    Inventors: John C. Murphy, Robert Osiander, Jane W. Maclachlan Spicer
  • Patent number: 5998995
    Abstract: A microelectromechanical-based magnetostrictive magnetometer that uses, as an active element, a commercial (001) silicon microcantilever coated with an amorphous thin film of the giant magnetostrictive alloy Terfenol-D and a compact optical beam deflection transduction scheme. A set of Helmholtz coils is used to create an ac magnetic excitation field for driving the mechanical resonance of the coated microcantilever. When the coated microcantilever is placed in a dc magnetic field, the dc field will change the amplitude at the mechanical resonance of the coated microcantilever thereby causing a deflection that can be measured. The magnetometer has been demonstrated with a sensitivity near 1 .mu.T.
    Type: Grant
    Filed: October 3, 1997
    Date of Patent: December 7, 1999
    Assignee: The Johns Hopkins University
    Inventors: Robert Osiander, Scott A. Ecelberger, Robert B. Givens, Dennis K. Wickenden, John C. Murphy, Thomas J. Kistenmacher
  • Patent number: 5959452
    Abstract: The invention consists, in one embodiment, of a resonator such as a conductive bar supported by two wires placed at the nodal points of the fundamental resonance frequency. The wires also supply current of this frequency to the resonator. In the presence of a magnetic field, the Lorentz force causes the resonator to vibrate. The amplitude of this vibration is proportional to a vector component of the magnetic field. The motion of the resonator is detected using one of a number of possible methods including optical beam deflection. The invention has a sensitivity of at least 1 nT, comparable to that of a commercial fluxgate magnetometer, and a dynamic range exceeding 80 dB.
    Type: Grant
    Filed: October 3, 1997
    Date of Patent: September 28, 1999
    Assignee: The Johns Hopkins University
    Inventors: Robert B. Givens, John C. Murphy, Dennis K. Wickenden, Robert Osiander, Thomas J. Kistenmacher
  • Patent number: 5126654
    Abstract: Electrical current distribution in the soil surrounding a buried pipeline is detected by applying an AC electrical potential between the pipe and a buried electrode spaced from the pipe. The magnetic field at spaced localities along the pipe arising from currents transverse to the pipe is detected. Additionally, a potential containing a plurality of alternating frequencies is similarly applied to the pipe and the magnetic field induced by the resulting electrical current both along the pipe and transversely of the pipe is detected. The magnetic field is detected by correlation discrimination at spaced locations along the pipe and across the spectrum of the impressed frequencies. The detected data is used to determine the capacitance and resistance of the soil/pipe interface at localities along the pipe and to generate impedance plots which indicate characteristics of that interface.
    Type: Grant
    Filed: April 2, 1990
    Date of Patent: June 30, 1992
    Assignees: New York Gas Group, Southern California Gas Company,, Columbia Gas System Service Corporation
    Inventors: John C. Murphy, Glenn S. Hartong, Ralph F. Cohn, Patrick J. Moran