Patents by Inventor John C Rondoni

John C Rondoni has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200338267
    Abstract: Techniques for modeling therapy fields for therapy delivered by medical devices are described. Each therapy field model is based on a set of therapy parameters and represents where therapy will propagate from the therapy system delivering therapy according to the set of therapy parameters. Therapy field models may be useful in guiding the modification of therapy parameters. As one example, a processor compares an algorithmic model of a therapy field to a reference therapy field and adjusts at least one therapy parameter based on the comparison. As another example, a processor adjusts at least one therapy parameter to increase an operating efficiency of the therapy system while substantially maintaining the modeled therapy field.
    Type: Application
    Filed: July 14, 2020
    Publication date: October 29, 2020
    Inventors: Martin T. Gerber, John C. Rondoni
  • Patent number: 10744260
    Abstract: Techniques for modeling therapy fields for therapy delivered by medical devices are described. Each therapy field model is based on a set of therapy parameters and represents where therapy will propagate from the therapy system delivering therapy according to the set of therapy parameters. Therapy field models may be useful in guiding the modification of therapy parameters. As one example, a processor compares an algorithmic model of a therapy field to a reference therapy field and adjusts at least one therapy parameter based on the comparison. As another example, a processor adjusts at least one therapy parameter to increase an operating efficiency of the therapy system while substantially maintaining the modeled therapy field.
    Type: Grant
    Filed: September 19, 2017
    Date of Patent: August 18, 2020
    Assignee: Medtronic, Inc.
    Inventors: Martin T. Gerber, John C. Rondoni
  • Publication number: 20180001023
    Abstract: Techniques for modeling therapy fields for therapy delivered by medical devices are described. Each therapy field model is based on a set of therapy parameters and represents where therapy will propagate from the therapy system delivering therapy according to the set of therapy parameters. Therapy field models may be useful in guiding the modification of therapy parameters. As one example, a processor compares an algorithmic model of a therapy field to a reference therapy field and adjusts at least one therapy parameter based on the comparison. As another example, a processor adjusts at least one therapy parameter to increase an operating efficiency of the therapy system while substantially maintaining the modeled therapy field.
    Type: Application
    Filed: September 19, 2017
    Publication date: January 4, 2018
    Inventors: Martin T. Gerber, John C. Rondoni
  • Patent number: 9789252
    Abstract: Techniques for modeling therapy fields for therapy delivered by medical devices are described. Each therapy field model is based on a set of therapy parameters and represents where therapy will propagate from the therapy system delivering therapy according to the set of therapy parameters. Therapy field models may be useful in guiding the modification of therapy parameters. As one example, a processor compares an algorithmic model of a therapy field to a reference therapy field and adjusts at least one therapy parameter based on the comparison. As another example, a processor adjusts at least one therapy parameter to increase an operating efficiency of the therapy system while substantially maintaining the modeled therapy field.
    Type: Grant
    Filed: January 22, 2009
    Date of Patent: October 17, 2017
    Assignee: Medtronic, Inc.
    Inventors: Martin T. Gerber, John C. Rondoni
  • Patent number: 9192763
    Abstract: In general, the disclosure is directed to an implantable neurostimulator and system capable of providing adaptive neurostimulation therapy to alleviate incontinence. The neurostimulator operates according to a set of stimulation parameters stored in memory. During operation, information is obtained from the patient, the implanted neurostimulator, one or more implanted sensors, or some combination thereof. A processor analyzes the information to automatically generate proposed adjustments to the stimulation parameters applied by the neurostimulator. The adjustments provide an adaptive neurostimulation therapy that supports or enhances therapeutic efficacy based on the information.
    Type: Grant
    Filed: June 2, 2014
    Date of Patent: November 24, 2015
    Assignee: MEDTRONIC, INC.
    Inventors: Martin T. Gerber, John C. Rondoni
  • Patent number: 9185489
    Abstract: A device that may be used as an automatic voiding diary detects urinary and/or fecal voiding events and records voiding information indicative of the voiding events without the need for significant patient interaction. The device includes a microphone that captures internal and/or external sounds that are associated with voiding events and generates an electrical signal based the sounds. The device processes the electrical signal to determine whether the signal is indicative of the occurrence of a voiding event (i.e., the device detects voiding events) by, for example, comparing the electrical signal to a signal template or comparing an amplitude of the signal to a threshold. The device may be a device implanted within the patient or an external device that can be carried or attached to the body or clothing of the patient.
    Type: Grant
    Filed: May 30, 2007
    Date of Patent: November 10, 2015
    Assignee: Medtronic, Inc.
    Inventors: Martin T. Gerber, John C. Rondoni
  • Patent number: 8958870
    Abstract: A therapy program may be modified based on information indicative of a change in a therapy field, which may represent a region of a patient's tissue to which therapy is delivered. Upon receiving information indicative of a therapy field change, an algorithmic model of a present therapy field may be generated and compared to an algorithmic model of a baseline therapy field, which indicates a therapy field that provides efficacious therapy to the patient. If a characteristic of the present therapy field differs from the baseline therapy field model, the current therapy program may be modified. In another example, upon receiving information indicative of a therapy field change, the current therapy program may be modified, and an algorithmic model of a therapy field based on the modified therapy program may be compared to a baseline therapy field model to determine whether the modified therapy program is a suitable alternative.
    Type: Grant
    Filed: January 23, 2009
    Date of Patent: February 17, 2015
    Assignee: Medtronic, Inc.
    Inventors: Martin T. Gerber, John C. Rondoni
  • Publication number: 20140277251
    Abstract: In general, the disclosure is directed to an implantable neurostimulator and system capable of providing adaptive neurostimulation therapy to alleviate incontinence. The neurostimulator operates according to a set of stimulation parameters stored in memory. During operation, information is obtained from the patient, the implanted neurostimulator, one or more implanted sensors, or some combination thereof. A processor analyzes the information to automatically generate proposed adjustments to the stimulation parameters applied by the neurostimulator. The adjustments provide an adaptive neurostimulation therapy that supports or enhances therapeutic efficacy based on the information.
    Type: Application
    Filed: June 2, 2014
    Publication date: September 18, 2014
    Applicant: Medtronic, Inc.
    Inventors: Martin T. Gerber, John C. Rondoni
  • Patent number: 8823382
    Abstract: Techniques for monitoring a battery of an implantable medical device are disclosed. First and second current sources are provided to draw currents having amplitudes of I1 and I2, respectively, from the battery. First and second voltage measurements, V1 and V2, are obtained when first and second combinations, respectively, of the first and second current sources are selectively activated. Battery impedance is determined using the current amplitudes I1 and I2 and the voltage measurements V1 and V2. The impedance measurement may be used to obtain an open-circuit voltage of the battery without the need to disconnect the battery from circuitry to which it provides power. Battery impedance and/or open-circuit battery voltage may then be used to determine an estimated time until an action is required involving the battery, which may include activation of an ERI or EOL indicator, or initiation of a recharge session.
    Type: Grant
    Filed: April 30, 2008
    Date of Patent: September 2, 2014
    Assignee: Medtronic, Inc.
    Inventors: John C. Rondoni, Mukul Jain
  • Patent number: 8812117
    Abstract: The invention is directed to controlling therapy delivery based on a relative motion between a first and second activity sensor. The relative motion between the activity sensors is representative of the relative motion between the locations of the body of the patient at which the respective activity sensors are located. The use of relative motion, however, may substantially remove motion experienced by both the activity sensors, e.g., motion caused by the environment in which patient is located, thus providing a new reference frame from which to analyze the motion measurements. The relative motion may be used to detect a condition of a movement disorder and/or control delivery of the therapy delivered to patient to treat or reduce the condition.
    Type: Grant
    Filed: May 31, 2013
    Date of Patent: August 19, 2014
    Assignee: Medtronic, Inc.
    Inventors: Martin T. Gerber, John C. Rondoni
  • Patent number: 8805525
    Abstract: A therapy program is modified to decompose an electrical stimulation signal defined by the therapy program into a plurality of subsignals based on a comparison between an energy associated with the stimulation signal and a threshold value. An electrical stimulation signal defined by a therapy program may be decomposed into a plurality of subsignals when an electrical stimulation energy of the stimulation signal exceeds the maximum energy output of the medical device or of a channel of the medical device. The energy associated with each one of the subsignals may be less than the energy threshold value of the medical device.
    Type: Grant
    Filed: September 30, 2013
    Date of Patent: August 12, 2014
    Assignee: Medtronic, Inc.
    Inventors: Martin T. Gerber, John C. Rondoni
  • Patent number: 8805508
    Abstract: Systems and methods for determining whether an involuntary voiding event was attributable to stress or urge incontinence include determining an activity level of a patient that coincides with the occurrence of the involuntary voiding event or the activity level within a certain time range of the involuntary voiding event. Patient activity data may be collected via a signal that varies as a function of patient activity. The signal may be generated with one or more sensors that detect motion, such as an accelerometer or a piezoelectric crystal, and/or one or more sensors that monitor a physiological parameter of the patient that varies as a function of patient activity, such as heart rate, respiratory rate, electrocardiogram morphology, respiration rate, respiratory volume, core temperature, muscular activity level or subcutaneous temperature of the patient.
    Type: Grant
    Filed: May 30, 2007
    Date of Patent: August 12, 2014
    Assignee: Medtronic, Inc.
    Inventors: Martin T. Gerber, John C. Rondoni
  • Patent number: 8792991
    Abstract: Techniques for modeling therapy fields for therapy delivered by medical devices are described. Each therapy field model is based on a set of therapy parameters and represents where therapy will propagate from the therapy system delivering therapy according to the set of therapy parameters. Therapy field models may be useful in guiding the modification of therapy parameters. As one example, a processor compares an algorithmic model of a therapy field to a reference therapy field and adjusts at least one therapy parameter based on the comparison. As another example, a processor adjusts at least one therapy parameter to increase an operating efficiency of the therapy system while substantially maintaining the modeled therapy field.
    Type: Grant
    Filed: January 22, 2009
    Date of Patent: July 29, 2014
    Assignee: Medtronic, Inc.
    Inventors: Martin T. Gerber, John C. Rondoni
  • Patent number: 8788055
    Abstract: Techniques for controlling therapy delivery based on the relative orientation and/or motion of a device accelerometer and a lead accelerometer are described. In one embodiment, a therapy system includes an electrical stimulator and a lead. The electrical stimulator comprises a processor that controls delivery of a therapy to a target stimulation site in a patient and a device accelerometer coupled to the electrical stimulator. The lead is coupled to the electrical stimulator to deliver the therapy from the electrical stimulator to the target stimulation site in the patient, and includes a lead accelerometer. The processor compares signals from the accelerometers, and controls delivery of the therapy to the patient based on the comparison. In this manner, the processor may adjust stimulation to, for example, address movement of electrodes relative to target tissue when a patient changes postures.
    Type: Grant
    Filed: May 7, 2007
    Date of Patent: July 22, 2014
    Assignee: Medtronic, Inc.
    Inventors: Martin T. Gerber, John C. Rondoni
  • Patent number: 8751010
    Abstract: A system and method for determining, during a recharge session, an amount of time until a subsequent recharge session is required to charge a rechargeable power source of an implantable medical device. A model allows a determination of the time until recharge without suspending charging during the recharge session by basing the determination on an initial measured battery voltage and a present current into the rechargeable power source. Alternatively, charging is suspended during the recharge session, and voltage measurements are taken, after which time charging is resumed, without patient input or suspending the recharge session.
    Type: Grant
    Filed: April 30, 2008
    Date of Patent: June 10, 2014
    Assignee: Medtronic, Inc.
    Inventors: John C. Rondoni, Jon P. Davis, Kevin L. Bright, Rajeev M. Sahasrabudhe
  • Patent number: 8744585
    Abstract: In general, the disclosure is directed to an implantable neurostimulator and system capable of providing adaptive neurostimulation therapy to alleviate incontinence. The neurostimulator operates according to a set of stimulation parameters stored in memory. During operation, information is obtained from the patient, the implanted neurostimulator, one or more implanted sensors, or some combination thereof. A processor analyzes the information to automatically generate proposed adjustments to the stimulation parameters applied by the neurostimulator. The adjustments provide an adaptive neurostimulation therapy that supports or enhances therapeutic efficacy based on the information.
    Type: Grant
    Filed: April 28, 2005
    Date of Patent: June 3, 2014
    Assignee: Medtronics, Inc.
    Inventors: Martin T. Gerber, John C. Rondoni
  • Publication number: 20140031900
    Abstract: A therapy program is modified to decompose an electrical stimulation signal defined by the therapy program into a plurality of subsignals based on a comparison between an energy associated with the stimulation signal and a threshold value. An electrical stimulation signal defined by a therapy program may be decomposed into a plurality of subsignals when an electrical stimulation energy of the stimulation signal exceeds the maximum energy output of the medical device or of a channel of the medical device. The energy associated with each one of the subsignals may be less than the energy threshold value of the medical device.
    Type: Application
    Filed: September 30, 2013
    Publication date: January 30, 2014
    Applicant: Medtronic, Inc.
    Inventors: Martin T. Gerber, John C. Rondoni
  • Patent number: 8583250
    Abstract: A therapy program is modified to decompose a therapy field generated by therapy delivery by a medical device according to a therapy program into a plurality of subfields based on a comparison between an energy associated with the therapy program and a threshold value. The therapy field defined by the therapy program may be decomposed into a plurality of subfields when an electrical stimulation energy of the stimulation signal defined by the therapy program exceeds the maximum energy output of the medical device or of a channel of the medical device. Therapy subprograms may be generated for each of the therapy subfields. An energy associated with each of the therapy subfields may be less than the energy threshold value of the medical device.
    Type: Grant
    Filed: January 26, 2009
    Date of Patent: November 12, 2013
    Assignee: Medtronic, Inc.
    Inventors: Martin T. Gerber, John C. Rondoni
  • Patent number: 8554331
    Abstract: A therapy program may be generated based on an algorithmic model of a baseline therapy field, which may represent a therapy field resulting from therapy delivery via the first therapy system based on a first therapy program. A second therapy program that controls therapy delivery by a second therapy system may be generated based on the baseline therapy field model. For example, therapy parameter values of the second therapy program may be selected to maintain at least one field characteristic of the baseline therapy field model. In some examples, the second therapy system may result from a hardware modification to the first therapy system. In other examples, the first and second therapy systems may be associated with different patients. For example, the baseline therapy field model may be an efficacious therapy field for a patient class, and a second therapy program may be generated for a patient in the class.
    Type: Grant
    Filed: January 23, 2009
    Date of Patent: October 8, 2013
    Assignee: Medtronic, Inc.
    Inventors: Martin T. Gerber, John C. Rondoni
  • Publication number: 20130261698
    Abstract: The invention is directed to controlling therapy delivery based on a relative motion between a first and second activity sensor. The relative motion between the activity sensors is representative of the relative motion between the locations of the body of the patient at which the respective activity sensors are located. The use of relative motion, however, may substantially remove motion experienced by both the activity sensors, e.g., motion caused by the environment in which patient is located, thus providing a new reference frame from which to analyze the motion measurements. The relative motion may be used to detect a condition of a movement disorder and/or control delivery of the therapy delivered to patient to treat or reduce the condition.
    Type: Application
    Filed: May 31, 2013
    Publication date: October 3, 2013
    Inventors: Martin T. Gerber, John C. Rondoni