Patents by Inventor John C. S. Hall

John C. S. Hall has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9954137
    Abstract: Photodetector structures and methods of manufacture are provided. The method includes forming undercuts about detector material formed on a substrate. The method further includes encapsulating the detector to form airgaps from the undercuts. The method further includes annealing the detector material causing expansion of the detector material into the airgaps.
    Type: Grant
    Filed: May 15, 2017
    Date of Patent: April 24, 2018
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: John J. Ellis-Monaghan, John C. S. Hall, Marwan H. Khater, Edward W. Kiewra, Steven M. Shank
  • Patent number: 9882081
    Abstract: Disclosed are a method of forming a photodetector and a photodetector structure. In the method, a polycrystalline or amorphous light-absorbing layer is formed on a dielectric layer such that it is in contact with a monocrystalline semiconductor core of an optical waveguide. The light-absorbing layer is then encapsulated in one or more strain-relief layers and a rapid melting growth (RMG) process is performed to crystallize the light-absorbing layer. The strain-relief layer(s) are tuned for controlled strain relief so that, during the RMG process, the light-absorbing layer remains crack-free. The strain-relief layer(s) are then removed and an encapsulation layer is formed over the light-absorbing layer (e.g., filling in surface pits that developed during the RMG process). Subsequently, dopants are implanted through the encapsulation layer to form diffusion regions for PIN diode(s). Since the encapsulation layer is relatively thin, desired dopant profiles can be achieved within the diffusion regions.
    Type: Grant
    Filed: August 3, 2016
    Date of Patent: January 30, 2018
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: John J. Ellis-Monaghan, John C. S. Hall, Marwan H. Khater, Edward W. Kiewra, Steven M. Shank
  • Publication number: 20170250306
    Abstract: Photodetector structures and methods of manufacture are provided. The method includes forming undercuts about detector material formed on a substrate. The method further includes encapsulating the detector to form airgaps from the undercuts. The method further includes annealing the detector material causing expansion of the detector material into the airgaps.
    Type: Application
    Filed: May 15, 2017
    Publication date: August 31, 2017
    Inventors: John J. ELLIS-MONAGHAN, John C.S. HALL, Marwan H. KHATER, Edward W. KIEWRA, Steven M. SHANK
  • Patent number: 9691812
    Abstract: Photodetector structures and methods of manufacture are provided. The method includes forming undercuts about detector material formed on a substrate. The method further includes encapsulating the detector to form airgaps from the undercuts. The method further includes annealing the detector material causing expansion of the detector material into the airgaps.
    Type: Grant
    Filed: April 29, 2015
    Date of Patent: June 27, 2017
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: John J. Ellis-Monaghan, John C. S. Hall, Marwan H. Khater, Edward W. Kiewra, Steven M. Shank
  • Publication number: 20170062647
    Abstract: Disclosed are a method of forming a photodetector and a photodetector structure. In the method, a polycrystalline or amorphous light-absorbing layer is formed on a dielectric layer such that it is in contact with a monocrystalline semiconductor core of an optical waveguide. The light-absorbing layer is then encapsulated in one or more strain-relief layers and a rapid melting growth (RMG) process is performed to crystallize the light-absorbing layer. The strain-relief layer(s) are tuned for controlled strain relief so that, during the RMG process, the light-absorbing layer remains crack-free. The strain-relief layer(s) are then removed and an encapsulation layer is formed over the light-absorbing layer (e.g., filling in surface pits that developed during the RMG process). Subsequently, dopants are implanted through the encapsulation layer to form diffusion regions for PIN diode(s). Since the encapsulation layer is relatively thin, desired dopant profiles can be achieved within the diffusion regions.
    Type: Application
    Filed: August 3, 2016
    Publication date: March 2, 2017
    Applicant: GLOBALFOUNDRIES INC.
    Inventors: John J. Ellis-Monaghan, John C. S. Hall, Marwan H. Khater, Edward W. Kiewra, Steven M. Shank
  • Publication number: 20160322419
    Abstract: Photodetector structures and methods of manufacture are provided. The method includes forming undercuts about detector material formed on a substrate. The method further includes encapsulating the detector to form airgaps from the undercuts. The method further includes annealing the detector material causing expansion of the detector material into the airgaps.
    Type: Application
    Filed: April 29, 2015
    Publication date: November 3, 2016
    Inventors: John J. ELLIS-MONAGHAN, John C.S. HALL, Marwan H. KHATER, Edward W. KIEWRA, Steven M. SHANK
  • Patent number: 9466753
    Abstract: Disclosed are a method of forming a photodetector and a photodetector structure. In the method, a polycrystalline or amorphous light-absorbing layer is formed on a dielectric layer such that it is in contact with a monocrystalline semiconductor core of an optical waveguide. The light-absorbing layer is then encapsulated in one or more strain-relief layers and a rapid melting growth (RMG) process is performed to crystallize the light-absorbing layer. The strain-relief layer(s) are tuned for controlled strain relief so that, during the RMG process, the light-absorbing layer remains crack-free. The strain-relief layer(s) are then removed and an encapsulation layer is formed over the light-absorbing layer (e.g., filling in surface pits that developed during the RMG process). Subsequently, dopants are implanted through the encapsulation layer to form diffusion regions for PIN diode(s). Since the encapsulation layer is relatively thin, desired dopant profiles can be achieved within the diffusion regions.
    Type: Grant
    Filed: August 27, 2015
    Date of Patent: October 11, 2016
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: John J. Ellis-Monaghan, John C. S. Hall, Marwan H. Khater, Edward W. Kiewra, Steven M. Shank