Patents by Inventor John C. Stone
John C. Stone has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 9472989Abstract: A method of manufacturing an armature for an electric motor, includes: placing a commutator and a lamination stack on an armature shaft, winding magnet wire in slots in the lamination stacks to form coils, attaching ends of the magnet wire to the commutator, and molding plastic around the magnet wire and around the shaft of the armature at ends of the lamination stack. A spinning inertia of the armature is adjusted by adjusting at least one of a mass of the plastic molded and a distribution of the plastic molded. Alternatively and/or additionally, at least one of a resonant frequency and critical speed of the armature is adjusted by adjusting at least one of a geometry of the plastic molded, the physical properties of the plastic and the mechanical properties of the plastic.Type: GrantFiled: August 26, 2014Date of Patent: October 18, 2016Assignee: Black & Decker Inc.Inventors: Hung T. Du, Brandon L. Verbrugge, Joshua F. West, Michael R. Sell, Richard T. Walter, David J. Smith, Earl M. Ortt, John C. Stone, Howard T. White
-
Patent number: 8997332Abstract: A method for forming an armature for an electric motor includes: securing a lamination stack having slots therein on an armature shaft, securing a commutator on one end of the armature shaft, winding magnet wires in the slots in the lamination stack and securing ends of the magnet wires to the commutator, the magnet wires having armature lead wires that extend from the slots to the commutator; and molding plastic over the magnet wires to encase at least the armature lead wires in plastic. Alternatively and/or additionally, plastic is molded over the magnet wires to retain them in the slots and to support the armature lead wires and prevent them from vibrating when the armature rotates during operation.Type: GrantFiled: November 1, 2012Date of Patent: April 7, 2015Assignee: Black & Decker Inc.Inventors: Hung T. Du, Brandon L. Verbrugge, Joshua F. West, Michael R. Sell, Richard T. Walter, David J. Smith, Earl M. Ortt, John C. Stone, Howard T. White
-
Patent number: 8937412Abstract: An electric motor for a power tool includes a stator and an armature disposed in the stator. The armature includes a lamination stack having slots therein; an armature shaft extending coaxially through the lamination stack; a plurality of magnet wires wound in the slots of the lamination stack; a commutator disposed on the armature shaft to which ends of the magnet wires are electrically coupled; and thermally conductive plastic at least partially encasing the magnet wires, the thermally conductive plastic having a base polymer that is a blend of at least two polymers.Type: GrantFiled: November 1, 2012Date of Patent: January 20, 2015Assignee: Black & Decker Inc.Inventors: Hung T. Du, Brandon L. Verbrugge, Joshua F. West, Michael R. Sell, Richard T. Walter, David J. Smith, Earl M. Ortt, John C. Stone, Howard T. White
-
Publication number: 20140360008Abstract: A method of manufacturing an armature for an electric motor, includes: placing a commutator and a lamination stack on an armature shaft, winding magnet wire in slots in the lamination stacks to form coils, attaching ends of the magnet wire to the commutator, and molding plastic around the magnet wire and around the shaft of the armature at ends of the lamination stack. A spinning inertia of the armature is adjusted by adjusting at least one of a mass of the plastic molded and a distribution of the plastic molded. Alternatively and/or additionally, at least one of a resonant frequency and critical speed of the armature is adjusted by adjusting at least one of a geometry of the plastic molded, the physical properties of the plastic and the mechanical properties of the plastic.Type: ApplicationFiled: August 26, 2014Publication date: December 11, 2014Inventors: Hung T. Du, Brandon L. Verbrugge, Joshua F. West, Michael R. Sell, Richard T. Walter, David J. Smith, Earl M. Ortt, John C. Stone, Howard T. White
-
Patent number: 8901787Abstract: An electric motor has a stator in which an armature is disposed. The armature has a shaft. One of the stator or the armature includes a lamination stack having slots in which magnet wires are wound, the magnet wires having a coating of heat activated adhesive. There is further provided plastic molded around the magnet wires with heat of the plastic activating the heat activated adhesive on the magnet wires during molding of the plastic to bond the magnet wires together.Type: GrantFiled: November 1, 2012Date of Patent: December 2, 2014Assignee: Black & Decker Inc.Inventors: Hung T. Du, Brandon L. Verbrugge, Joshua F. West, Michael R. Sell, Richard T. Walter, David J. Smith, Earl M. Ortt, John C. Stone, Howard T. White
-
Patent number: 8850690Abstract: A method of manufacturing an armature for an electric motor, includes: placing a commutator and a lamination stack on an armature shaft, winding magnet wire in slots in the lamination stacks to form coils, attaching ends of the magnet wire to the commutator, and molding plastic around the magnet wire and around the shaft of the armature at ends of the lamination stack. A spinning inertia of the armature is adjusted by adjusting at least one of a mass of the plastic molded and a distribution of the plastic molded. Alternatively and/or additionally, at least one of a resonant frequency and critical speed of the armature is adjusted by adjusting at least one of a geometry of the plastic molded, the physical properties of the plastic and the mechanical properties of the plastic.Type: GrantFiled: November 1, 2012Date of Patent: October 7, 2014Assignee: Black & Decker Inc.Inventors: Hung T. Du, Brandon L. Verbrugge, Joshua F. West, Michael R. Sell, Richard T. Walter, David J. Smith, Earl M. Ortt, John C. Stone, Howard T. White
-
Publication number: 20130300221Abstract: An electric motor has a stator in which an armature is disposed. The armature has a shaft. One of the stator or the armature includes a lamination stack having slots in which magnet wires are wound, the magnet wires having a coating of heat activated adhesive. There is further provided plastic molded around the magnet wires with heat of the plastic activating the heat activated adhesive on the magnet wires during molding of the plastic to bond the magnet wires together.Type: ApplicationFiled: November 1, 2012Publication date: November 14, 2013Inventors: Hung T. Du, Brandon L. Verbrugge, Joshua F. West, Michael R. Sell, Richard T. Walter, David J. Smith, Earl M. Ortt, John C. Stone, Howard T. White
-
Publication number: 20130291371Abstract: A method of manufacturing an armature for an electric motor, includes: placing a commutator and a lamination stack on an armature shaft, winding magnet wire in slots in the lamination stacks to form coils, attaching ends of the magnet wire to the commutator, and molding plastic around the magnet wire and around the shaft of the armature at ends of the lamination stack. A spinning inertia of the armature is adjusted by adjusting at least one of a mass of the plastic molded and a distribution of the plastic molded. Alternatively and/or additionally, at least one of a resonant frequency and critical speed of the armature is adjusted by adjusting at least one of a geometry of the plastic molded, the physical properties of the plastic and the mechanical properties of the plastic.Type: ApplicationFiled: November 1, 2012Publication date: November 7, 2013Inventors: Hung T. Du, Brandon L. Verbrugge, Joshua F. West, Michael R. Sell, Richard T. Walter, David J. Smith, Earl M. Ortt, John C. Stone, Howard T. White
-
Patent number: 8171616Abstract: An armature for an electric motor has a lamination stack on a shaft with a commutator mounted on one end of the shaft. Magnet wires wound in slots in the lamination stack, the commutator and armature shaft are at least partially encapsulated in thermoset. The commutator has a commutator ring divided into a plurality of segments with slots between the segments that are filled with a second plastic when the commutator is made by molding a core of the second plastic, such as phenolic, in the commutator ring before the commutator ring is mounted on the armature shaft. Prior to molding the thermoset, the commutator ring is sealed. The seal prevents the thermoset from flowing into the slots between the commutator ring segments or over the commutator ring.Type: GrantFiled: February 9, 2011Date of Patent: May 8, 2012Inventors: David J. Smith, John C. Stone, Robert Tumberlinson, Earl M. Ortt
-
Publication number: 20110126399Abstract: An armature for an electric motor has a lamination stack on a shaft with a commutator mounted on one end of the shaft. Magnet wires wound in slots in the lamination stack, the commutator and armature shaft are at least partially encapsulated in thermoset. The commutator has a commutator ring divided into a plurality of segments with slots between the segments that are filled with a second plastic when the commutator is made by molding a core of the second plastic, such as phenolic, in the commutator ring before the commutator ring is mounted on the armature shaft. Prior to molding the thermoset, the commutator ring is sealed. The seal prevents the thermoset from flowing into the slots between the commutator ring segments or over the commutator ring.Type: ApplicationFiled: February 9, 2011Publication date: June 2, 2011Inventors: David J. Smith, John C. Stone, Robert Tumberlinson, Earl M. Ortt
-
Patent number: 7908736Abstract: An armature for an electric motor has a lamination stack on a shaft with a commutator mounted on one end of the shaft. Magnet wires wound in slots in the lamination stack, the commutator and armature shaft are at least partially encapsulated in thermoset. The commutator has a commutator ring divided into a plurality of segments with slots between the segments that are filled with a second plastic when the commutator is made by molding a core of the second plastic, such as phenolic, in the commutator ring before the commutator ring is mounted on the armature shaft. Prior to molding the thermoset, the commutator ring is sealed. The seal prevents the thermoset from flowing into the slots between the commutator ring segments or over the commutator ring.Type: GrantFiled: November 21, 2007Date of Patent: March 22, 2011Assignee: Black & Decker Inc.Inventors: David J. Smith, John C. Stone, Robert Tumberlinson, Earl M. Ortt
-
Publication number: 20090126184Abstract: An armature for an electric motor has a lamination stack on a shaft with a commutator mounted on one end of the shaft. Magnet wires wound in slots in the lamination stack, the commutator and armature shaft are at least partially encapsulated in thermoset. The commutator has a commutator ring divided into a plurality of segments with slots between the segments that are filled with a second plastic when the commutator is made by molding a core of the second plastic, such as phenolic, in the commutator ring before the commutator ring is mounted on the armature shaft. Prior to molding the thermoset, the commutator ring is sealed. The seal prevents the thermoset from flowing into the slots between the commutator ring segments or over the commutator ring.Type: ApplicationFiled: November 21, 2007Publication date: May 21, 2009Applicant: Black & Decker Inc.Inventors: David J. Smith, John C. Stone, Robert Tumberlinson, Earl M. Ortt
-
Patent number: 7096566Abstract: Magnet wires wound in slots in a lamination stack of a dynamoelectric machine are encapsulated, in whole or in part, with plastic. The plastic may be thermally conductive and have features molded therein that enhance heat transfer. The plastic may stiffen the armature and increase its critical speed. Characteristics of the plastic, its geometry and its distribution may be varied to adjust spinning inertia and resonant frequency of the armature. The magnet wires may be compressed into the slots, by application of iso-static pressure or by the pressure of the plastic being molded around them. Larger magnet wire can then be used which increases the power of the electric motor using the armature having the larger magnet wire. A two or three plate mold may be used to mold the plastic around the armature. Balancing features can be molded in place. The plastic can have a base polymer that is a blend of two or more polymers and various thermally conductive fillings.Type: GrantFiled: July 10, 2003Date of Patent: August 29, 2006Assignee: Black & Decker Inc.Inventors: Hung T. Du, Brandon L. Verbrugge, Joshua F. West, Michael R. Sell, Richard T. Walter, David J. Smith, Earl M. Ortt, John C. Stone, Howard T. White
-
Patent number: 7078843Abstract: An electric motor, power tool using the electric motor, and method of making the electric motor includes making a stator by separately forming pole pieces, return path pieces and field coils. The field coils are placed over necks of the pole path pieces and the return path pieces are affixed to the pole pieces. An armature having an outside diameter of at least 0.625 the outside diameter of the stator is placed in the stator. In an aspect, the field coils are formed so that they extend beyond pole tips of the pole pieces.Type: GrantFiled: September 3, 2004Date of Patent: July 18, 2006Assignee: Black & Decker Inc.Inventors: Hung T. Du, Brandon L. Verbrugge, Earl M. Ortt, Michael J. Agnes, John C. Stone, Michael A. Zemlock, Robert G. Kusmierski, David J. Smith
-
Patent number: 6946758Abstract: Magnet wires wound in slots in a lamination stack of a dynamoelectric machine are encapsulated, in whole or in part, with thermally conductive plastic. Pre-formed features having a thermal conductivity higher than the thermally conductive plastic are insert molded when the plastic is molded. The pre-formed features may include a finned end cap and a fan. Alternatively, end domes of the plastic over end coils of the wound magnet wires have a metallic layer on them, such as by being metallized. The end domes can be formed with features which are also metallized. The thermally conductive plastic can have a phase change additive in it. The magnet wires can have a layer of heat activated adhesive that is activated when the plastic is molded. Slots in the lamination stack can include slot liners formed of thermally conductive plastic. A fan can be formed when the thermally conductive plastic is molded to encapsulate the magnet wires.Type: GrantFiled: July 10, 2003Date of Patent: September 20, 2005Assignee: Black & Decker Inc.Inventors: Hung T. Du, Brandon L. Verbrugge, Joshua F. West, Michael R. Sell, Richard T. Walter, Earl M. Ortt, John C. Stone
-
Publication number: 20040056538Abstract: Magnet wires wound in slots in a lamination stack of a dynamoelectric machine are encapsulated, in whole or in part, with plastic. The plastic may be thermally conductive and have features molded therein that enhance heat transfer. The plastic may stiffen the armature and increase its critical speed. Characteristics of the plastic, its geometry and its distribution may be varied to adjust spinning inertia and resonant frequency of the armature. The magnet wires may be compressed into the slots, by application of iso-static pressure or by the pressure of the plastic being molded around them. Larger magnet wire can then be used which increases the power of the electric motor using the armature having the larger magnet wire. A two or three plate mold may be used to mold the plastic around the armature. Balancing features can be molded in place. The plastic can have a base polymer that is a blend of two or more polymers and various thermally conductive fillings.Type: ApplicationFiled: July 10, 2003Publication date: March 25, 2004Inventors: Hung T. Du, Brandon L. Verbrugge, Joshua F. West, Michael R. Sell, Richard T. Walter, David J. Smith, Earl M. Ortt, John C. Stone, Howard T. White
-
Publication number: 20040056537Abstract: Magnet wires wound in slots in a lamination stack of a dynamoelectric machine are encapsulated, in whole or in part, with thermally conductive plastic. Pre-formed features having a thermal conductivity higher than the thermally conductive plastic are insert molded when the plastic is molded. The pre-formed features may include a finned end cap and a fan. Alternatively, end domes of the plastic over end coils of the wound magnet wires have a metallic layer on them, such as by being metallized. The end domes can be formed with features which are also metallized. The thermally conductive plastic can have a phase change additive in it. The magnet wires can have a layer of heat activated adhesive that is activated when the plastic is molded. Slots in the lamination stack can include slot liners formed of thermally conductive plastic. A fan can be formed when the thermally conductive plastic is molded to encapsulate the magnet wires.Type: ApplicationFiled: July 10, 2003Publication date: March 25, 2004Inventors: Hung T. Du, Brandon L. Verbrugge, Joshua F. West, Michael R. Sell, Richard T. Walter, Earl M. Ortt, John C. Stone
-
Patent number: 6692254Abstract: Apparatus and method for fastening a denture plate with many artificial teeth to a plurality of implants screwed into the bone is disclosed that may be completed on the same day as surgical implantation of the implants. The denture plate is prepared before surgery. A rigid metal bar is prepared that is fitted to register with the implants after the implants have been implanted. The rigid metal bar is affixed to the denture plate. Screws through the bar are received into the top of each implant to thereby secure the bar and the attached denture plate to the implants. This distributes the tooth forces among the implants for enhanced function. The bar is composed of a metal attachment for each implant. A pair of wings extends out from each attachment. The attachments are temporarily mounted on the implants so that wings from adjacent attachments overlap. The attachments and wings are temporarily joined with cement.Type: GrantFiled: February 1, 2002Date of Patent: February 17, 2004Inventors: Barry A. Kligerman, John C. Stone, Michael Peterson
-
Patent number: 5395486Abstract: Dehydrated compositions are obtained by: combining a hydrous composition, e.g., a hydrous electrolyte salt, with inert fluorochemical liquid; heating the resulting mixture in a vessel to volatilize water and inert fluorochemical liquid therein until the water content of the mixture is reduced to a desired level; optionally treating the resulting dehydrated mixture with another chemical material, e.g., a polar organic solvent; and optionally subjecting the dehydrated mixture or the treated dehydrated mixture to further treatment, e.g., separation of the mixture. Liquid electrolytes suitable for use in battery applications can be prepared by this method.Type: GrantFiled: October 19, 1993Date of Patent: March 7, 1995Assignee: Minnesota Mining and Manufacturing CompanyInventors: Michael E. Killian, John C. Stone