Patents by Inventor John Cheng

John Cheng has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240120210
    Abstract: Exemplary methods of etching a silicon-containing material may include flowing a first fluorine-containing precursor into a remote plasma region of a semiconductor processing chamber. The methods may include flowing a sulfur-containing precursor into the remote plasma region of the semiconductor processing chamber. The methods may include forming a plasma within the remote plasma region to generate plasma effluents of the first fluorine-containing precursor and the sulfur-containing precursor. The methods may include flowing the plasma effluents into a processing region of the semiconductor processing chamber. A substrate may be positioned within the processing region. The substrate may include a trench formed through stacked layers including alternating layers of silicon nitride and silicon oxide. The methods may include isotropically etching the layers of silicon nitride while substantially maintaining the silicon oxide.
    Type: Application
    Filed: October 11, 2022
    Publication date: April 11, 2024
    Applicant: Applied Materials, Inc.
    Inventors: Mikhail Korolik, Paul E. Gee, Wei Ying Doreen Yong, Tuck Foong Koh, John Sudijono, Philip A. Kraus, Thai Cheng Chua
  • Publication number: 20240113212
    Abstract: Technologies for a field effect transistor (FET) with a ferroelectric gate dielectric are disclosed. In an illustrative embodiment, a perovskite stack is grown on a buffer layer as part of manufacturing a transistor. The perovskite stack includes one or more doped semiconductor layers alternating with other lattice-matched layers, such as undoped semiconductor layers. Growing the doped semiconductor layers on lattice-matched layers can improve the quality of the doped semiconductor layers. The lattice-matched layers can be preferentially etched away, leaving the doped semiconductor layers as fins for a ribbon FET. In another embodiment, an interlayer can be deposited on top of a semiconductor layer, and a ferroelectric layer can be deposited on the interlayer. The interlayer can bridge a gap in lattice parameters between the semiconductor layer and the ferroelectric layer.
    Type: Application
    Filed: September 29, 2022
    Publication date: April 4, 2024
    Applicant: Intel Corporation
    Inventors: Ian Alexander Young, Dmitri Evgenievich Nikonov, Marko Radosavljevic, Matthew V. Metz, John J. Plombon, Raseong Kim, Kevin P. O'Brien, Scott B. Clendenning, Tristan A. Tronic, Dominique A. Adams, Carly Rogan, Hai Li, Arnab Sen Gupta, Gauri Auluck, I-Cheng Tung, Brandon Holybee, Rachel A. Steinhardt, Punyashloka Debashis
  • Publication number: 20240105810
    Abstract: In one embodiment, transistor device includes a first source or drain material on a substrate, a semiconductor material on the first source or drain material, a second source or drain material on the semiconductor material, a dielectric layer on the substrate and adjacent the first source or drain material, a ferroelectric (FE) material on the dielectric layer and adjacent the semiconductor material, and a gate material on or adjacent to the FE material. The FE material may be a perovskite material and may have a lattice parameter that is less than a lattice parameter of the semiconductor material.
    Type: Application
    Filed: September 23, 2022
    Publication date: March 28, 2024
    Applicant: Intel Corporation
    Inventors: Rachel A. Steinhardt, Ian Alexander Young, Dmitri Evgenievich Nikonov, Marko Radosavljevic, Matthew V. Metz, John J. Plombon, Raseong Kim, Kevin P. O'Brien, Scott B. Clendenning, Tristan A. Tronic, Dominique A. Adams, Carly Rogan, Arnab Sen Gupta, Brandon Holybee, Punyashloka Debashis, I-Cheng Tung, Gauri Auluck
  • Patent number: 11939356
    Abstract: Disclosed are recombinant insect ferritin nanoparticles that can be used to display two different trimeric antigens at an equal ratio. Also disclosed are nucleic acids encoding the recombinant insect ferritin nanoparticles and methods of producing the recombinant insect ferritin nanoparticles. Methods for eliciting an immune response in a subject are also provided.
    Type: Grant
    Filed: March 15, 2021
    Date of Patent: March 26, 2024
    Assignee: The United States of America, as represented by the Secretary, Department of Health and Human Services
    Inventors: Peter Kwong, Ivelin Georgiev, Michael Gordon Joyce, Masaru Kanekiyo, Aliaksandr Druz, Ulrich Baxa, Joseph Van Galen, Cheng Cheng, John Mascola, Yaroslav Tsybovsky, Yongping Yang, Barney Graham, Syed Mohammad Moin, Jeffrey Boyington
  • Publication number: 20240097031
    Abstract: In one embodiment, a transistor device includes a gate material layer on a substrate, a ferroelectric (FE) material layer on the gate material, a semiconductor channel material layer on the FE material layer, a first source/drain material on the FE material layer and adjacent the semiconductor channel material layer, and a second source/drain material on the FE material layer and adjacent the semiconductor channel material layer and on an opposite side of the semiconductor channel material layer from the first source/drain material. A first portion of the FE material layer is directly between the gate material and the first source/drain material, and a second portion of the FE material layer is directly between the gate material and the second source/drain material.
    Type: Application
    Filed: September 16, 2022
    Publication date: March 21, 2024
    Applicant: Intel Corporation
    Inventors: Punyashloka Debashis, Rachel A. Steinhardt, Brandon Holybee, Kevin P. O'Brien, Dmitri Evgenievich Nikonov, John J. Plombon, Ian Alexander Young, Raseong Kim, Carly Rogan, Dominique A. Adams, Arnab Sen Gupta, Marko Radosavljevic, Scott B. Clendenning, Gauri Auluck, Hai Li, Matthew V. Metz, Tristan A. Tronic, I-Cheng Tung
  • Publication number: 20240092746
    Abstract: Provided herein are opioid receptor modulators and pharmaceutical compositions comprising said compounds.
    Type: Application
    Filed: February 13, 2023
    Publication date: March 21, 2024
    Inventors: Julio Cesar MEDINA, Alok NERURKAR, Corinne SADLOWSKI, Frederick SEIDL, Heng CHENG, Jason DUQUETTE, John LEE, Martin HOLAN, Pingyu DING, Xiaodong WANG, Tien WIDJAJA, Thomas NGUYEN, Ulhas BHATT, Yihong LI, Zhi-liang WEI
  • Patent number: 11934023
    Abstract: Embodiments of the disclosure relate to an optical fiber cable having at least one optical fiber, a cable jacket, and a foam layer. The cable jacket has an inner surface and an outer surface. The outer surface is an outermost surface of the optical fiber cable, and the inner surface is disposed around the at least one optical fiber. The foam layer is disposed between the at least one optical fiber and the cable jacket. The foam layer includes a polymer component having from 30% to 100% by weight of a polyolefin elastomer (POE) or thermoplastic elastomer (TPE) and from 0% to 70% by weight of low density polyethylene (LDPE). The foam layer has a closed-cell morphology having pores with an average effective circle diameter of 10 ?m to 500 ?m. Further, the expansion ratio of the foam layer is at least 50%.
    Type: Grant
    Filed: October 12, 2021
    Date of Patent: March 19, 2024
    Assignee: CORNING RESEARCH & DEVELOPMENT CORPORATION
    Inventors: Ryan Thomas Adams, Bradley Jerome Blazer, Anne Germaine Bringuier, Xiaole Cheng, Sergey Vladimirovich Chernykh, John Richard Jacks, Rebecca Elizabeth Sistare
  • Publication number: 20240088268
    Abstract: A method and structures are used to fabricate a nanosheet semiconductor device. Nanosheet fins including nanosheet stacks including alternating silicon (Si) layers and silicon germanium (SiGe) layers are formed on a substrate and etched to define a first end and a second end along a first axis between which each nanosheet fin extends parallel to every other nanosheet fin. The SiGe layers are undercut in the nanosheet stacks at the first end and the second end to form divots, and a dielectric is deposited in the divots. The SiGe layers between the Si layers are removed before forming source and drain regions of the nanosheet semiconductor device such that there are gaps between the Si layers of each nanosheet stack, and the dielectric anchors the Si layers. The gaps are filled with an oxide that is removed after removing the dummy gate and prior to forming the replacement gate.
    Type: Application
    Filed: April 12, 2023
    Publication date: March 14, 2024
    Inventors: Marc A. Bergendahl, Kangguo Cheng, Fee Li Lie, Eric R. Miller, John R. Sporre, Sean Teehan
  • Publication number: 20240079607
    Abstract: A fuel cell includes a gas diffusion layer (GM) situated between a catalyst layer of the fuel cell and a flow field plate of the fuel cell. The GM has a first region and a second region along a thickness direction of the fuel cell. The first region is adjacent to the catalyst layer and has a first thermal conductivity. The second region is adjacent to the flow field plate and has a second thermal conductivity lower than the first thermal conductivity.
    Type: Application
    Filed: January 22, 2021
    Publication date: March 7, 2024
    Inventors: Lei Cheng, Xiaobai Li, Christina Johnston, Bicheng Chen, Rikiya Yoshida, Shinichi Makino, Xu Zhang, John F. Christensen
  • Patent number: 11682878
    Abstract: The present disclosure is generally directed to techniques for thermal management within optical subassembly modules that include thermally coupling heat-generating components, such as laser assemblies, to a temperature control device, such as a thermoelectric cooler, without the necessity of disposing the heat-generating components within a hermetically-sealed housing. Accordingly, this arrangement provides a thermal communication path that extends from the heat-generating components, through the temperature control device, and ultimately to a heatsink component, such as a sidewall of a transceiver housing, without the thermal communication path extending through a hermetically-sealed housing/cavity.
    Type: Grant
    Filed: August 6, 2020
    Date of Patent: June 20, 2023
    Assignee: Applied Optoelectronics, Inc.
    Inventors: Kai-Sheng Lin, John Cheng, Ziliang Cai
  • Patent number: 11575278
    Abstract: A multi-functional travel charger and a control system thereof are disclosed. The charger includes a charger body and a main control module communicated with wireless charging transmitting modules, a top shell and a bottom shell of the charger body are connected in a magnetic attraction/snap-fit manner, and the wireless charging transmitting modules include a mobile phone wireless charging transmitting module and an accessory wireless charging transmitting module. The control system includes a circuit control and charge/discharge management system and wireless charging transmitting modules; the accessory wireless charging transmitting module includes one or more of an earbud wireless charging transmitting module, a watch wireless charging transmitting module, and a stylus wireless charging transmitting module.
    Type: Grant
    Filed: November 27, 2020
    Date of Patent: February 7, 2023
    Assignee: Momax Technology (Shenzhen) Co Ltd
    Inventors: Xia Zhao, John Cheng
  • Publication number: 20230017318
    Abstract: The present teaching relates to tracking an event at a plurality of distributed servers. In one example, an event to be tracked is determined. A user associated with the event is identified. A script is generated to be embedded in a web page. The script triggers an event message when the user performs an online behavior related to the web page in accordance with the event. The event message triggered by the script is received. A tracing flag is determined from the event message. An instruction is provided to the plurality of distributed servers for executing one or more applications based on the event and the tracing flag.
    Type: Application
    Filed: September 30, 2022
    Publication date: January 19, 2023
    Inventors: Haiyan Luo, John Cheng, Yi Mao, Herve Marcellini
  • Patent number: 11463532
    Abstract: The present teaching relates to tracking an event at a plurality of distributed servers. In one example, an event to be tracked is determined. A user associated with the event is identified. A script is generated to be embedded in a web page. The script triggers an event message when the user performs an online behavior related to the web page in accordance with the event. The event message triggered by the script is received. A tracing flag is determined from the event message. An instruction is provided to the plurality of distributed servers for executing one or more applications based on the event and the tracing flag.
    Type: Grant
    Filed: December 15, 2015
    Date of Patent: October 4, 2022
    Assignee: YAHOO AD TECH LLC
    Inventors: Haiyan Luo, John Cheng, Yi Mao, Herve Marcellini
  • Patent number: 11320601
    Abstract: In general, the present disclosure is directed to locking arrangements for use with optical subassembly housings, such as small form-factor pluggable (SFFP) housings, that include a handle member configured to rotate about the housing to allow a user to select a target/desired orientation. Preferably, the locking arrangement couples to a pluggable housing that is configured to removably couple into a receptacle of an optical transceiver cage or other suitable enclosure. The locking arrangement further includes a handle member rotatably coupled to the pluggable housing, the handle member being configured to allow the pluggable housing to releasably lock within the receptacle. The handle member is also preferably configured to maintain a user-selected orientation such that the handle member remains at a given angle relative to the pluggable housing in the absence of a user-supplied force.
    Type: Grant
    Filed: September 24, 2020
    Date of Patent: May 3, 2022
    Assignee: Applied Optoelectronics, Inc.
    Inventors: Kai-Sheng Lin, John Cheng, Ziliang Cai
  • Publication number: 20220091345
    Abstract: In general, the present disclosure is directed to locking arrangements for use with optical subassembly housings, such as small form-factor pluggable (SFFP) housings, that include a handle member configured to rotate about the housing to allow a user to select a target/desired orientation. Preferably, the locking arrangement couples to a pluggable housing that is configured to removably couple into a receptacle of an optical transceiver cage or other suitable enclosure. The locking arrangement further includes a handle member rotatably coupled to the pluggable housing, the handle member being configured to allow the pluggable housing to releasably lock within the receptacle. The handle member is also preferably configured to maintain a user-selected orientation such that the handle member remains at a given angle relative to the pluggable housing in the absence of a user-supplied force.
    Type: Application
    Filed: September 24, 2020
    Publication date: March 24, 2022
    Inventors: Kai-Sheng LIN, John CHENG, Ziliang CAI
  • Publication number: 20220091350
    Abstract: In general, the present disclosure is directed to locking arrangements for use with optical subassembly housings, such as small form-factor pluggable (SFFP) housings, that include a handle member configured to rotate about the housing to allow a user to select a target/desired orientation. Preferably, the locking arrangement couples to a pluggable housing that is configured to removably couple into a receptacle of an optical transceiver cage or other suitable enclosure. The locking arrangement further includes a handle member rotatably coupled to the pluggable housing, the handle member being configured to allow the pluggable housing to releasably lock within the receptacle. The handle member is also preferably configured to maintain a user-selected orientation such that the handle member remains at a given angle relative to the pluggable housing in the absence of a user-supplied force.
    Type: Application
    Filed: September 24, 2020
    Publication date: March 24, 2022
    Inventors: Kai-Sheng LIN, John CHENG, Ziliang CAI
  • Publication number: 20220045478
    Abstract: The present disclosure is generally directed to techniques for thermal management within optical subassembly modules that include thermally coupling heat-generating components, such as laser assemblies, to a temperature control device, such as a thermoelectric cooler, without the necessity of disposing the heat-generating components within a hermetically-sealed housing. Accordingly, this arrangement provides a thermal communication path that extends from the heat-generating components, through the temperature control device, and ultimately to a heatsink component, such as a sidewall of a transceiver housing, without the thermal communication path extending through a hermetically-sealed housing/cavity.
    Type: Application
    Filed: August 6, 2020
    Publication date: February 10, 2022
    Inventors: Kai-Sheng LIN, Yi WANG, John CHENG
  • Publication number: 20220045472
    Abstract: The present disclosure is generally directed to techniques for thermal management within optical subassembly modules that include thermally coupling heat-generating components, such as laser assemblies, to a temperature control device, such as a thermoelectric cooler, without the necessity of disposing the heat-generating components within a hermetically-sealed housing. Accordingly, this arrangement provides a thermal communication path that extends from the heat-generating components, through the temperature control device, and ultimately to a heatsink component, such as a sidewall of a transceiver housing, without the thermal communication path extending through a hermetically-sealed housing/cavity.
    Type: Application
    Filed: August 6, 2020
    Publication date: February 10, 2022
    Inventors: Kai-Sheng LIN, John CHENG, Ziliang CAI
  • Publication number: 20210407080
    Abstract: Cell identification and classification is a well-known problem in the pathology domain that help identify microenvironments. In addition to the characteristic of each cell, its interactions with the neighboring regions or other cells is also important. This involves correct identification of neighboring elements and analytically representing the interactions between them. This disclosure presents a system that combines many such features, some hand engineered and some machine derived through training of Deep Learning algorithms that can be used to study the microenvironments.
    Type: Application
    Filed: June 24, 2021
    Publication date: December 30, 2021
    Inventors: Evan Szu, Nishant Borude, Nivedita Suresh, Michael H. Chu, David G. Zapol, Vinona Bhatia, Darick M. Tong, Noriko Y. Tong, John Cheng, Clifford Szu, Eric J. Suba
  • Patent number: RE49913
    Abstract: A power metal-oxide-semiconductor field-effect transistor (MOSFET) includes a substrate, a drift layer over the substrate, and a spreading layer over the drift layer. The spreading layer includes a pair of junction implants separated by a junction gate field effect (JFET) region. A gate oxide layer is on top of the spreading layer. The gate contact is on top of the gate oxide layer. Each one of the source contacts are on a portion of the spreading layer separate from the gate oxide layer and the gate contact. The drain contact is on the surface of the substrate opposite the drift layer.
    Type: Grant
    Filed: October 26, 2020
    Date of Patent: April 9, 2024
    Assignee: Wolfspeed, Inc.
    Inventors: Vipindas Pala, Anant Kumar Agarwal, Lin Cheng, Daniel Jenner Lichtenwalner, John Williams Palmour