Patents by Inventor John Christopher Mauro

John Christopher Mauro has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190218136
    Abstract: An optical boroaluminate glass article comprises: from greater than or equal to 10.0 mol % to less than or equal to 30.0 mol % Al2O3; from greater than or equal to 10.0 mol % to less than or equal to 55.0 mol % CaO; from greater than or equal to 10.0 mol % to less than or equal to 25.0 mol % B2O3; from greater than or equal to 0.0 mol % to less than or equal to 30.0 mol % SiO2; and from greater than or equal to 1.0 mol % to less than or equal to 20.0 mol % refractive index raising components. The optical boroaluminate glass article has a refractive index of the glass article, measured at 589.3 nm, of greater than or equal to 1.62, and a density of less than or equal to 4.00 g/cm3.
    Type: Application
    Filed: January 9, 2019
    Publication date: July 18, 2019
    Inventors: Bruce Gardiner Aitken, Lina Ma, John Christopher Mauro
  • Patent number: 10329186
    Abstract: According to one embodiment, a glass may include from about 50 mol. % to about 70 mol. % SiO2; from about 12 mol. % to about 35 mol. % B2O3; from about 4 mol. % to about 12 mol. % Al2O3; greater than 0 mol. % and less than or equal to 1 mol. % alkali metal oxide, wherein Li2O is greater than or equal to about 20% of the alkali metal oxide; from about 0.3 mol. % to about 0.7 mol. % of Na2O or Li2O; and greater than 0 mol. % and less than 12 mol. % of total divalent oxide, wherein the total divalent oxide includes at least one of CaO, MgO and SrO, and wherein a ratio of Li2O (mol. %) to (Li2O (mol. %)+(Na2O (mol. %)) is greater than or equal 0.4 and less than or equal to 0.6. The glass may have a relatively low high temperature resistivity and a relatively high low temperature resistivity.
    Type: Grant
    Filed: December 20, 2016
    Date of Patent: June 25, 2019
    Assignee: CORNING INCORPORATED
    Inventors: Megan Aurora DeLamielleure, John Christopher Mauro, Charlene Marie Smith, Liying Zhang
  • Patent number: 10315949
    Abstract: Alkali aluminosilicate glasses that exhibit fast ion exchange performance and having low softening points that enable the glasses to be formed into non-planar, three-dimensional shapes. The glasses contain less than about 1 mol % of boron oxide and, in some embodiments, are substantially free of B2O3. Furthermore, these glasses have excess amounts of alkali oxides relative to both Al2O3 and P2O5, in order to improve melting behavior and ion exchange performance while still achieving sufficiently low softening points to allow for formability.
    Type: Grant
    Filed: February 10, 2016
    Date of Patent: June 11, 2019
    Assignee: CORNING INCORPORATED
    Inventors: Timothy Michael Gross, John Christopher Mauro, Yihong Mauro, Rohit Rai, Adama Tandia, Zhongzhi Tang
  • Publication number: 20190161391
    Abstract: A bioactive glass composition including: 50 to 70% SiO2; 0.1 to 10% Al2O3, 5 to 30% Na2O, 0.1 to 15% K2O, 0.1 to 15% MgO, 0.1 to 20% CaO, and 5 to 10% P2O5, based on a 100 wt % of the composition. Also disclosed is a method of making the bioactive glass composition.
    Type: Application
    Filed: November 28, 2018
    Publication date: May 30, 2019
    Inventors: Huayun Deng, Qiang Fu, John Christopher Mauro, Michael Joshua Snyder
  • Publication number: 20190160201
    Abstract: A chemically strengthened bioactive glass-ceramic composition as defined herein. Also disclosed are methods of making and using the disclosed compositions.
    Type: Application
    Filed: November 28, 2018
    Publication date: May 30, 2019
    Inventors: Huayun Deng, Qiang Fu, John Christopher Mauro
  • Publication number: 20190161393
    Abstract: A dental formulation including: a bioactive glass composition as defined herein, in an effective amount; and a suitable carrier as defined herein, in an effective amount. Also disclosed is a method of making and using the dental formulation to treat, for example, dentin sensitivities.
    Type: Application
    Filed: November 28, 2018
    Publication date: May 30, 2019
    Inventors: Huayun Deng, Ye Fang, Qiang Fu, John Christopher Mauro, Michael S. Pambianchi
  • Publication number: 20190147126
    Abstract: Computer-implemented methods and apparatus are provided for predicting/estimating (i) a non-equilibrium viscosity for at least one given time point in a given temperature profile for a given glass composition, (ii) at least one temperature profile that will provide a given non-equilibrium viscosity for a given glass composition, or (iii) at least one glass composition that will provide a given non-equilibrium viscosity for a given time point in a given temperature profile. The methods and apparatus can be used to predict/estimate stress relaxation in a glass article during forming as well as compaction, stress relaxation, and/or thermal sag or thermal creep of a glass article when the article is subjected to one or more post-forming thermal treatments.
    Type: Application
    Filed: January 11, 2019
    Publication date: May 16, 2019
    Inventors: Douglas Clippinger Allan, Adam James Ellison, Xiaoju Guo, Timothy James Kiczenski, John Christopher Mauro, Marcel Potuzak
  • Patent number: 10259739
    Abstract: Laminated glass articles and methods for making the same are disclosed. In one embodiment, a laminated glass article may include a glass core layer and at least one glass cladding layer fused to the glass core layer. The at least one glass cladding layer may be phase separated into a first phase and at least one second phase having different compositions. The first phase of the at least one glass cladding layer may have an interconnected matrix. The at least one second phase of the at least one glass cladding layer may be dispersed throughout the interconnected matrix of the first phase of the at least one glass cladding layer. In some embodiments, the at least one second phase may be selectively removed from the interconnected matrix leaving a porous, interconnected matrix of the first phase.
    Type: Grant
    Filed: May 20, 2016
    Date of Patent: April 16, 2019
    Assignee: CORNING INCORPORATED
    Inventors: Mingqian He, John Christopher Mauro, Ronald John Parysek, Natesan Venkataraman
  • Publication number: 20190084869
    Abstract: Provided herein are glass based articles comprising SiO2 in a range from about 20 mol % to about 80 mol %; Al2O3 in a range from about 2 mol % to about 60 mol %; MgO; Li2O; La2O3 in an amount greater than or equal to about 3 mol %; a sum of alkali metal oxides (R2O) is greater than or equal to about 6 mol %; and a sum of MgO and Al2O3 is greater than or equal to about 28 mol %, wherein the glass based article is free of BeO.
    Type: Application
    Filed: September 20, 2018
    Publication date: March 21, 2019
    Inventors: Jian Luo, John Christopher Mauro
  • Publication number: 20190071345
    Abstract: A glass article including at least about 40 mol % SiO2 and, optionally, a colorant imparting a preselected color is disclosed. In general, the glass includes, in mol %, from about 40-70 SiO2, 0-25 Al2O3, 0-10 B2O3; 5-35 Na2O, 0-2.5 K2O, 0-8.5 MgO, 0-2 ZnO, 0-10% P2O5 and 0-1.5 CaO. As a result of ion exchange, the glass includes a compressive stress (?s) at at least one surface and, optionally, a color. In one method, communicating a colored glass with an ion exchange bath imparts ?s while in another; communicating imparts ?s and a preselected color. In the former, a colorant is part of the glass batch while in the latter; it is part of the bath. In each, the colorant includes one or more metal containing dopants formulated to impart to a preselected color. Examples of one or more metal containing dopants include one or more transition and/or rare earth metals.
    Type: Application
    Filed: November 5, 2018
    Publication date: March 7, 2019
    Inventors: John Christopher Mauro, Marcel Potuzak
  • Patent number: 10216871
    Abstract: Computer-implemented methods and apparatus are provided for predicting/estimating (i) a non-equilibrium viscosity for at least one given time point in a given temperature profile for a given glass composition, (ii) at least one temperature profile that will provide a given non-equilibrium viscosity for a given glass composition, or (iii) at least one glass composition that will provide a given non-equilibrium viscosity for a given time point in a given temperature profile. The methods and apparatus can be used to predict/estimate stress relaxation in a glass article during forming as well as compaction, stress relaxation, and/or thermal sag or thermal creep of a glass article when the article is subjected to one or more post-forming thermal treatments.
    Type: Grant
    Filed: November 17, 2016
    Date of Patent: February 26, 2019
    Assignee: Corning Incorporated
    Inventors: Douglas Clippinger Allan, Adam James Ellison, Xiaoju Guo, Timothy James Kiczenski, John Christopher Mauro, Marcel Potuzak
  • Publication number: 20190048318
    Abstract: A bioactive glass-ceramic composition as defined herein. Also disclosed are methods of making and using the disclosed compositions.
    Type: Application
    Filed: October 17, 2018
    Publication date: February 14, 2019
    Inventors: Huayun Deng, Qiang Fu, John Christopher Mauro
  • Publication number: 20190023606
    Abstract: Intermediate to high CTE glass compositions and laminates formed from the same are described. The glasses described herein have properties, such as liquidus viscosity or liquidus temperature, which make them particularly well suited for use in fusion forming processes, such as the fusion down draw process and/or the fusion lamination process. Further, the glass composition may be used in a laminated glass article, such as a laminated glass article formed by a fusion laminate process, to provide strengthened laminates via clad compression as a result of CTE mismatch between the core glass and clad glass.
    Type: Application
    Filed: September 26, 2018
    Publication date: January 24, 2019
    Inventors: Timothy James Kiczenski, John Christopher Mauro, Michelle Diane Pierson-Stull, Robert Anthony Schaut, Natesan Venkateraman
  • Patent number: 10155690
    Abstract: Glass compositions that may be used to produce chemically strengthened glass sheets by ion exchange. The glass compositions are chosen to promote simultaneously high compressive stress and deep depth of layer or, alternatively, to reduce the time needed to ion exchange the glass to produce a predetermined compressive stress and depth of layer.
    Type: Grant
    Filed: July 5, 2017
    Date of Patent: December 18, 2018
    Assignee: CORNING INCORPORATED
    Inventors: John Christopher Mauro, Marcel Potuzak, Morten Mattrup Smedskjaer
  • Publication number: 20180354845
    Abstract: A method includes forming a glass article. The glass article includes a core and a clad adjacent to the core. The core includes a first glass composition. The clad includes a second glass composition different than the first glass composition. A degradation rate of the second glass composition in a reagent is greater than a degradation rate of the first glass composition in the reagent.
    Type: Application
    Filed: August 20, 2018
    Publication date: December 13, 2018
    Inventors: Alexey Sergeyevich Amosov, Heather Debra Boek, Frank Coppola, Matthew John Dejneka, John Christopher Mauro, Netesan Venkataraman, Mark Owen Weller
  • Patent number: 10112865
    Abstract: Intermediate to high CTE glass compositions and laminates formed from the same are described. The glasses described herein have properties, such as liquidus viscosity or liquidus temperature, which make them particularly well suited for use in fusion forming processes, such as the fusion down draw process and/or the fusion lamination process. Further, the glass composition may be used in a laminated glass article, such as a laminated glass article formed by a fusion laminate process, to provide strengthened laminates via clad compression as a result of CTE mismatch between the core glass and clad glass.
    Type: Grant
    Filed: April 22, 2016
    Date of Patent: October 30, 2018
    Assignee: Corning Incorporated
    Inventors: Timothy James Kiczenski, John Christopher Mauro, Michelle Diane Pierson-Stull, Robert Anthony Schaut, Natesan Venkataraman
  • Publication number: 20180304588
    Abstract: A glass laminate includes a glass core layer having a core coefficient of thermal expansion (CTE) and a glass cladding layer adjacent to the core layer and having a cladding CTE that is less than the core CTE such that the core layer is in tension and the cladding layer is in compression. A stress profile of the glass laminate includes a compressive peak disposed between an outer surface of the cladding layer and an inner surface of the cladding layer.
    Type: Application
    Filed: October 12, 2016
    Publication date: October 25, 2018
    Inventors: Jason Thomas Harris, Guangli Hu, John Christopher Mauro
  • Publication number: 20180265400
    Abstract: Alkali aluminosilicate glasses that are ion exchangeable to high compressive stresses, have fast ion exchange kinetics, and high intrinsic damage resistance. The glasses achieve all of the above desired properties either with only small amounts of P2O5 (<1 mol %) or without addition of any P2O5.
    Type: Application
    Filed: May 22, 2018
    Publication date: September 20, 2018
    Inventors: Matthew John Dejneka, John Christopher Mauro
  • Patent number: 10077208
    Abstract: A method includes forming a glass article. The glass article includes a core and a clad adjacent to the core. The core includes a first glass composition. The clad includes a second glass composition different than the first glass composition. A degradation rate of the second glass composition in a reagent is greater than a degradation rate of the first glass composition in the reagent.
    Type: Grant
    Filed: March 12, 2015
    Date of Patent: September 18, 2018
    Assignee: CORNING INCORPORATED
    Inventors: Alexey Sergeyevich Amosov, Heather Debra Boek, Frank Coppola, Matthew John Dejneka, John Christopher Mauro, Natesan Venkataraman, Mark Owen Weller
  • Patent number: 10000410
    Abstract: Alkali aluminosilicate glasses that are ion exchangeable to high compressive stresses, have fast ion exchange kinetics, and high intrinsic damage resistance. The glasses achieve all of the above desired properties either with only small amounts of P2O5 (<1 mol %) or without addition of any P2O5.
    Type: Grant
    Filed: November 18, 2014
    Date of Patent: June 19, 2018
    Assignee: CORNING INCORPORATED
    Inventors: Matthew John Dejneka, John Christopher Mauro