Patents by Inventor John Clayton Foster

John Clayton Foster has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6784506
    Abstract: A method for preventing the thermal decomposition of a high-K dielectric layer of a gate electrode during the formation of a metal silicide on the gate electrode by using nickel as the metal component of the silicide.
    Type: Grant
    Filed: August 28, 2001
    Date of Patent: August 31, 2004
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Qi Xiang, Paul R. Besser, Matthew S. Buynoski, John Clayton Foster, Paul L. King, Eric N. Paton
  • Patent number: 6764912
    Abstract: The formation of metal silicides in silicon nitride spacers on a gate electrode causes bridging between a gate electrode and the source and drain regions of a semiconductor device. The bridging is prevented by forming a thin layer of silicon oxide on the silicon nitride spacers prior to forming the metal silicide layers on the device.
    Type: Grant
    Filed: August 2, 2001
    Date of Patent: July 20, 2004
    Assignee: Advanced Micro Devices, Inc.
    Inventors: John Clayton Foster, Eric N. Paton, Matthew S. Buynoski, Qi Xiang, Paul R. Besser, Paul L. King
  • Patent number: 6605513
    Abstract: A self-aligned silicide process that can accommodate a low thermal budget and form silicide regions of small dimensions in a controlled reaction. In a first temperature treatment, nickel metal or nickel alloy is reacted with a silicon material to form at least one high resistance nickel silicide region. Unreacted nickel is removed. A dielectric layer is then deposited over a high resistance nickel silicide regions. In a second temperature treatment, the at least one high resistance nickel silicide region and dielectric layer are reacted at a prescribed temperature to form at least one low resistance silicide region and process the dielectric layer. Bridging between regions is avoided by the two-step process as silicide growth is controlled, and unreacted nickel between silicide regions is removed after the first temperature treatment. The processing of the high resistance nickel silicide regions and the dielectric layer are conveniently combined into a single temperature treatment.
    Type: Grant
    Filed: December 6, 2000
    Date of Patent: August 12, 2003
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Eric N. Paton, Ercan Adem, Jacques J. Bertrand, Paul R. Besser, Matthew S. Buynoski, John Clayton Foster, Paul L. King, George Jonathan Kluth, Minh Van Ngo, Christy Mei-Chu Woo
  • Publication number: 20030042515
    Abstract: A method for preventing the thermal decomposition of a high-K dielectric layer of a gate electrode during the formation of a metal silicide on the gate electrode by using nickel as the metal component of the silicide.
    Type: Application
    Filed: August 28, 2001
    Publication date: March 6, 2003
    Applicant: Advanced Micro Devices, Inc.
    Inventors: Qi Xiang, Paul R. Besser, Matthew S. Buynoski, John Clayton Foster, Paul L. King, Eric N. Paton
  • Publication number: 20030034533
    Abstract: A damascene gate semiconductor structure that is formed utilizing a silicide stop layer. Initially, a gate opening is provided in an insulating layer on a substrate. A first dielectric layer is deposited in the gate opening over the substrate. A silicide stop layer is then deposited in the gate opening over the first silicon layer. A second silicon layer is then deposited in the gate opening over the silicide stop layer. A metal or alloy layer is then deposited over the insulating and the second silicon layer. The damascene semiconductor structure is then temperature treated to react the metal or alloy layer with the second silicon layer to form a silicide layer. Any unreated metal or alloy is then removed from the metal or alloy layer.
    Type: Application
    Filed: October 1, 2002
    Publication date: February 20, 2003
    Applicant: ADVANCED MICRO DEVICES, INC.
    Inventors: Eric N. Paton, Paul R. Besser, Matthew S. Buynoski, Qi Xiang, Paul L. King, John Clayton Foster
  • Patent number: 6458679
    Abstract: A damascene gate semiconductor structure that is formed utilizing a silicide stop layer. Initially, a gate opening is provided in an insulating layer on a substrate. A first dielectric layer is deposited in the gate opening over the substrate. A silicide stop layer is then deposited in the gate opening over the first silicon layer. A second silicon layer is then deposited in the gate opening over the silicide stop layer. A metal or alloy layer is then deposited over the insulating and the second silicon layer. The damascene semiconductor structure is then temperature treated to react the metal or alloy layer with the second silicon layer to form a silicide layer. Any unreated metal or alloy is then removed from the metal or alloy layer.
    Type: Grant
    Filed: February 12, 2001
    Date of Patent: October 1, 2002
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Eric N. Paton, Paul R. Besser, Matthew S. Buynoski, Qi Xiang, Paul L. King, John Clayton Foster
  • Publication number: 20020068408
    Abstract: A self-aligned silicide process that can accommodate a low thermal budget and form silicide regions of small dimensions in a controlled reaction. In a first temperature treatment, nickel metal or nickel alloy is reacted with a silicon material to form at least one high resistance nickel silicide region. Unreacted nickel is removed. A dielectric layer is then deposited over a high resistance nickel silicide regions. In a second temperature treatment, the at least one high resistance nickel silicide region and dielectric layer are reacted at a prescribed temperature to form at least one low resistance silicide region and process the dielectric layer. Bridging between regions is avoided by the two-step process as silicide growth is controlled, and unreacted nickel between silicide regions is removed after the first temperature treatment. The processing of the high resistance nickel silicide regions and the dielectric layer are conveniently combined into a single temperature treatment.
    Type: Application
    Filed: December 6, 2000
    Publication date: June 6, 2002
    Applicant: Advanced Micro Devices, Inc.
    Inventors: Eric N. Paton, Ercan Adem, Jacques J. Bertrand, Paul R. Besser, Matthew S. Buynoski, John Clayton Foster, Paul L. King, George Jonathan Kluth, Minh Van Ngo, Christy Mei-Chu Woo