Patents by Inventor John Cooksey

John Cooksey has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20140096456
    Abstract: A building panel and a building formed therefrom, where the building includes a plurality of building panels arranged to form a cylindrical shape, where each panel comprises a single, or monolithic, glass piece, where each glass piece is substantially rectangular and includes two opposing long sides extending in a height direction and two opposing short sides extending substantially in a width direction, and where each glass piece forms an identical circular arc when viewed from either of the two opposing short sides.
    Type: Application
    Filed: September 30, 2013
    Publication date: April 10, 2014
    Applicant: Apple Inc.
    Inventors: David ANDREINI, Karl BACKUS, John COOKSEY, Tim ELIASSEN, Scott David HAZARD, Holger KRUEGER, Peter LENK, James O'CALLAGHAN, Yutang ZHANG
  • Patent number: 8329568
    Abstract: In one embodiment of the present invention, a field effect transistor device is provided. The field effect transistor device comprises an active area, including a first semiconductor material of a first conductivity type. A channel region is included within the active area. A gate region overlays the channel region, and the first source/drain region and the second source/drain region are embedded in the active area and spaced from each other by the channel region. The first source/drain region and the second source/drain region each include a second semiconductor material of a second conductivity type opposite of the first conductivity type. A well-tap region is embedded in the active area and spaced from the first source/drain region by the channel region and the second source/drain region. The well-tap region includes the second semiconductor material of the first conductivity type. The first source/drain region and the second source/drain region and the well-tap region are epitaxial deposits.
    Type: Grant
    Filed: May 3, 2010
    Date of Patent: December 11, 2012
    Assignee: Xilinx, Inc.
    Inventors: Jae-Gyung Ahn, Myongseob Kim, Ping-Chin Yeh, Zhiyuan Wu, John Cooksey
  • Patent number: 8302064
    Abstract: Device features, such as gate lengths and channel widths, are selectively altered by first identifying those devices within a semiconductor die that exhibit physical attributes, e.g., leakage current and threshold voltage magnitude, that are different than previously verified by a design/simulation tool used to design the devices. The identified, non-conforming devices are then further identified by the amount of deviation from the original design goal that is exhibited by each non-conforming device. The non-conforming devices are then mathematically categorized into bins, where each bin is tagged with a magnitude of deviation from a design goal. The mask layers defining the features of the non-conforming devices are then selectively modified by an amount that is commensurate with the tagged deviation. The selectively modified mask layers are then used to generate a new semiconductor die that exhibits improved performance.
    Type: Grant
    Filed: March 10, 2009
    Date of Patent: October 30, 2012
    Assignee: Xilinx, Inc.
    Inventors: Sharmin Sadoughi, Prabhuram Gopalan, Michael J. Hart, John Cooksey, Zhiyuan Wu
  • Publication number: 20070237005
    Abstract: A split gate NAND flash memory structure is formed on a semiconductor substrate of a first conductivity type. The NAND structure comprises a first region of a second conductivity type in the substrate with a second region of the second conductivity type in the substrate, spaced apart from the first region. A continuous first channel region is defined between the first region and the second region. A plurality of floating gates are spaced apart from one another with each positioned over a separate portion of the channel region. A plurality of control gates are provided with each associated with and adjacent to a floating gate. Each control gate has two portions: a first portion over a portion of the channel region and a second portion over the associated floating gate and capacitively coupled thereto.
    Type: Application
    Filed: June 6, 2007
    Publication date: October 11, 2007
    Inventors: Yuniarto Widjaja, John Cooksey, Changyuan Chen, Feng Gao, Ya-Fen Lin, Dana Lee
  • Publication number: 20070020853
    Abstract: A split gate NAND flash memory structure is formed on a semiconductor substrate of a first conductivity type. The NAND structure comprises a first region of a second conductivity type and a second region of the second conductivity type in the substrate, spaced apart from the first region, thereby defining a channel region therebetween. A plurality of floating gates are spaced apart from one another and each is insulated from the channel region. A plurality of control gates are spaced apart from one another, with each control gate insulated from the channel region. Each of the control gate is between a pair of floating gates and is capacitively coupled to the pair of floating gates. A plurality of select gates are spaced apart from one another, with each select gate insulated from the channel region. Each select gate is between a pair of floating gates.
    Type: Application
    Filed: September 5, 2006
    Publication date: January 25, 2007
    Inventors: Feng Gao, Ya-Fen Lin, John Cooksey, Changyuan Chen, Yuniarto Widjaja, Dana Lee
  • Publication number: 20060273378
    Abstract: A split gate NAND flash memory structure is formed on a semiconductor substrate of a first conductivity type. The NAND structure comprises a first region of a second conductivity type and a second region of the second conductivity type in the substrate, spaced apart from the first region, thereby defining a channel region therebetween. A plurality of floating gates are spaced apart from one another and each is insulated from the channel region. A plurality of control gates are spaced apart from one another, with each control gate insulated from the channel region. Each of the control gate is between a pair of floating gates and is capacitively coupled to the pair of floating gates. A plurality of select gates are spaced apart from one another, with each select gate insulated from the channel region. Each select gate is between a pair of floating gates.
    Type: Application
    Filed: May 20, 2005
    Publication date: December 7, 2006
    Inventors: Feng Gao, Ya-Fen Lin, John Cooksey, Changyuan Chen, Yuniarto Widjaja, Dana Lee
  • Publication number: 20060261399
    Abstract: A split gate NAND flash memory structure is formed on a semiconductor substrate of a first conductivity type. The NAND structure comprises a first region of a second conductivity type in the substrate with a second region of the second conductivity type in the substrate, spaced apart from the first region. A continuous first channel region is defined between the first region and the second region. A plurality of floating gates are spaced apart from one another with each positioned over a separate portion of the channel region. A plurality of control gates are provided with each associated with and adjacent to a floating gate. Each control gate has two portions: a first portion over a portion of the channel region and a second portion over the associated floating gate and capacitively coupled thereto.
    Type: Application
    Filed: May 20, 2005
    Publication date: November 23, 2006
    Inventors: Yuniarto Widjaja, John Cooksey, Changyuan Chen, Feng Gao, Ya-Fen Lin, Dana Lee