Patents by Inventor John D. Evans

John D. Evans has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240219140
    Abstract: A set of archery cam devices for an archery bow is disclosed herein. The set of archery cam devices includes, in an embodiment, a first cam device configured to be rotatably coupled to a first limb of an archery bow. The first cam device has a first bowstring sheave, a first control sheave, and a first power cable sheave. The set also includes a second cam device configured to be rotatably coupled to a second limb of the archery bow. The second cam device has a second bowstring sheave, a second control sheave, and a second power cable sheave.
    Type: Application
    Filed: January 3, 2024
    Publication date: July 4, 2024
    Inventor: John D. Evans
  • Publication number: 20230418049
    Abstract: A two-layer optical beam steering device, system, method of utilization and method of fabrication are disclosed. The solid-state device enables beam steering in two dimensions with dramatically fewer control lines than prior devices. This renders the device more technically realizable, easier to control, and more affordable to manufacture. Because less data need be transferred to the device, the device is also able to operate at faster speeds.
    Type: Application
    Filed: November 17, 2021
    Publication date: December 28, 2023
    Inventors: John R. Sanford, John D. Evans
  • Patent number: 11145947
    Abstract: RF and microwave radiation directing or controlling components are provided that may be monolithic, that may be formed from a plurality of electrodeposition operations and/or from a plurality of deposited layers of material, that may include switches, inductors, antennae, transmission lines, filters, hybrid couplers, antenna arrays and/or other active or passive components. Components may include non-radiation-entry and non-radiation-exit channels that are useful in separating sacrificial materials from structural materials. Preferred formation processes use electrochemical fabrication techniques (e.g. including selective depositions, bulk depositions, etching operations and planarization operations) and post-deposition processes (e.g. selective etching operations and/or back filling operations).
    Type: Grant
    Filed: December 11, 2019
    Date of Patent: October 12, 2021
    Assignee: Microfabrica Inc.
    Inventors: Elliott R. Brown, John D. Evans, Christopher A. Bang, Adam L. Cohen, Michael S. Lockard, Dennis R. Smalley, Morton Grosser
  • Publication number: 20200227805
    Abstract: RF and microwave radiation directing or controlling components are provided that may be monolithic, that may be formed from a plurality of electrodeposition operations and/or from a plurality of deposited layers of material, that may include switches, inductors, antennae, transmission lines, filters, hybrid couplers, antenna arrays and/or other active or passive components. Components may include non-radiation-entry and non-radiation-exit channels that are useful in separating sacrificial materials from structural materials. Preferred formation processes use electrochemical fabrication techniques (e.g. including selective depositions, bulk depositions, etching operations and planarization operations) and post-deposition processes (e.g. selective etching operations and/or back filling operations).
    Type: Application
    Filed: December 11, 2019
    Publication date: July 16, 2020
    Applicant: Microfabrica Inc.
    Inventors: Elliott R. Brown, John D. Evans, Christopher A. Bang, Adam L. Cohen, Michael S. Lockard, Dennis R. Smalley, Morton Grosser
  • Publication number: 20190221911
    Abstract: RF and microwave radiation directing or controlling components are provided that may be monolithic, that may be formed from a plurality of electrodeposition operations and/or from a plurality of deposited layers of material, that may include switches, inductors, antennae, transmission lines, filters, hybrid couplers, antenna arrays and/or other active or passive components. Components may include non-radiation-entry and non-radiation-exit channels that are useful in separating sacrificial materials from structural materials. Preferred formation processes use electrochemical fabrication techniques (e.g. including selective depositions, bulk depositions, etching operations and planarization operations) and post-deposition processes (e.g. selective etching operations and/or back filling operations).
    Type: Application
    Filed: October 22, 2018
    Publication date: July 18, 2019
    Applicant: Microfabrica Inc.
    Inventors: Elliott R. Brown, John D. Evans, Christopher A. Bang, Adam L. Cohen, Michael S. Lockard, Dennis R. Smalley, Morton Grosser
  • Publication number: 20180241112
    Abstract: RF and microwave radiation directing or controlling components are provided that may be monolithic, that may be formed from a plurality of electrodeposition operations and/or from a plurality of deposited layers of material, that may include switches, inductors, antennae, transmission lines, filters, hybrid couplers, antenna arrays and/or other active or passive components. Components may include non-radiation-entry and non-radiation-exit channels that are useful in separating sacrificial materials from structural materials. Preferred formation processes use electrochemical fabrication techniques (e.g. including selective depositions, bulk depositions, etching operations and planarization operations) and post-deposition processes (e.g. selective etching operations and/or back filling operations).
    Type: Application
    Filed: February 2, 2018
    Publication date: August 23, 2018
    Applicant: Microfabrica Inc.
    Inventors: Elliott R. Brown, John D. Evans, Christopher A. Bang, Adam L. Cohen, Michael S. Lockard, Dennis R. Smalley, Morton Grosser
  • Patent number: 9885535
    Abstract: A compound bow comprising a handle portion having a first limb and a second limb extending outwardly therefrom, a wide body cam assembly pivotally coupled to the first limb near an outer end thereof, and a dual wheel assembly pivotally coupled to the second limb near an outer end thereof. The wide body cam assembly comprises a main sheave and a collector sheave located on opposite sides of a cable sheave. The main sheave is spaced apart from the cable sheave by a first distance sufficient to permit arrows to be fired from the bow free from interference by a cable without the use of a cable guard. The dual wheel assembly comprises a feed out sheave and a take in sheave separated by a second distance which is larger than the first distance. The feed out sheave is positioned substantially within a plane defined by the main sheave.
    Type: Grant
    Filed: August 31, 2016
    Date of Patent: February 6, 2018
    Inventor: John D. Evans
  • Publication number: 20170263994
    Abstract: RF and microwave radiation directing or controlling components are provided that may be monolithic, that may be formed from a plurality of electrodeposition operations and/or from a plurality of deposited layers of material, that may include switches, inductors, antennae, transmission lines, filters, hybrid couplers, antenna arrays and/or other active or passive components. Components may include non-radiation-entry and non-radiation-exit channels that are useful in separating sacrificial materials from structural materials. Preferred formation processes use electrochemical fabrication techniques (e.g. including selective depositions, bulk depositions, etching operations and planarization operations) and post-deposition processes (e.g. selective etching operations and/or back filling operations).
    Type: Application
    Filed: December 21, 2016
    Publication date: September 14, 2017
    Applicant: Microfabrica Inc.
    Inventors: Elliott R. Brown, John D. Evans, Christopher A. Bang, Adam L. Cohen, Michael S. Lockard, Dennis R. Smalley, Morton Grosser
  • Patent number: 9620834
    Abstract: Multi-layer, multi-material fabrication methods include depositing at least one structural material and at least one sacrificial material during the formation of each of a plurality of layers wherein deposited materials for each layer are planarized to set a boundary level for the respective layer and wherein during formation of at least one layer at least three materials are deposited with a planarization operation occurring before deposition of the last material to set a planarization level above the layer boundary level and wherein a planarization occurs after deposition of the last material level above the layer boundary level and wherein a planarization occurs after deposition of the last material whereby the boundary level for the layer is set. Some formation processes use electrochemical fabrication techniques (e.g. including selective depositions, bulk depositions, etching operations and planarization operations) and post-deposition processes (e.g.
    Type: Grant
    Filed: February 28, 2014
    Date of Patent: April 11, 2017
    Assignee: Microfabrica Inc.
    Inventors: Elliott R. Brown, John D. Evans, Christopher A. Bang, Adam L. Cohen, Michael S. Lockard, Dennis R. Smalley, Morton Grosser
  • Patent number: 9614266
    Abstract: RF and microwave radiation directing or controlling components are provided that may be monolithic, that may be formed from a plurality of electrodeposition operations and/or from a plurality of deposited layers of material, that may include switches, inductors, antennae, transmission lines, filters, hybrid couplers, antenna arrays and/or other active or passive components. Components may include non-radiation-entry and non-radiation-exit channels that are useful in separating sacrificial materials from structural materials. Preferred formation processes use electrochemical fabrication techniques (e.g. including selective depositions, bulk depositions, etching operations and planarization operations) and post-deposition processes (e.g. selective etching operations and/or back filling operations).
    Type: Grant
    Filed: March 31, 2015
    Date of Patent: April 4, 2017
    Assignee: Microfabrica Inc.
    Inventors: Elliott R. Brown, John D. Evans, Christopher A. Bang, Adam L. Cohen, Michael S. Lockard, Dennis R. Smalley, Morton Grosser
  • Publication number: 20170051996
    Abstract: A compound bow comprising a handle portion having a first limb and a second limb extending outwardly therefrom, a wide body cam assembly pivotally coupled to the first limb near an outer end thereof, and a dual wheel assembly pivotally coupled to the second limb near an outer end thereof. The wide body cam assembly comprises a main sheave and a collector sheave located on opposite sides of a cable sheave. The main sheave is spaced apart from the cable sheave by a first distance sufficient to permit arrows to be fired from the bow free from interference by a cable without the use of a cable guard. The dual wheel assembly comprises a feed out sheave and a take in sheave separated by a second distance which is larger than the first distance. The feed out sheave is positioned substantially within a plane defined by the main sheave.
    Type: Application
    Filed: August 31, 2016
    Publication date: February 23, 2017
    Inventor: John D. Evans
  • Patent number: 9459066
    Abstract: A compound bow comprising a handle portion having a first limb and a second limb extending outwardly therefrom, a wide body cam assembly pivotally coupled to the first limb near an outer end thereof, and a dual wheel assembly pivotally coupled to the second limb near an outer end thereof. The wide body cam assembly comprises a main sheave and a collector sheave located on opposite sides of a cable sheave. The main sheave is spaced apart from the cable sheave by a first distance sufficient to permit arrows to be fired from the bow free from interference by a cable without the use of a cable guard. The dual wheel assembly comprises a feed out sheave and a take in sheave separated by a second distance which is larger than the first distance. The feed out sheave is positioned substantially within a plane defined by the main sheave.
    Type: Grant
    Filed: April 28, 2009
    Date of Patent: October 4, 2016
    Inventor: John D. Evans
  • Publication number: 20150311575
    Abstract: RF and microwave radiation directing or controlling components are provided that may be monolithic, that may be formed from a plurality of electrodeposition operations and/or from a plurality of deposited layers of material, that may include switches, inductors, antennae, transmission lines, filters, hybrid couplers, antenna arrays and/or other active or passive components. Components may include non-radiation-entry and non-radiation-exit channels that are useful in separating sacrificial materials from structural materials. Preferred formation processes use electrochemical fabrication techniques (e.g. including selective depositions, bulk depositions, etching operations and planarization operations) and post-deposition processes (e.g. selective etching operations and/or back filling operations).
    Type: Application
    Filed: March 31, 2015
    Publication date: October 29, 2015
    Inventors: Elliott R. Brown, John D. Evans, Christopher A. Bang, Adam L. Cohen, Michael S. Lockard, Dennis R. Smalley, Morton Grosser
  • Publication number: 20150300767
    Abstract: A compound bow comprising a handle portion having a first limb and a second limb extending outwardly therefrom, a wide body cam assembly pivotally coupled to the first limb near an outer end thereof, and a dual wheel assembly pivotally coupled to the second limb near an outer end thereof. The wide body cam assembly comprises a main sheave and a collector sheave located on opposite sides of a cable sheave. The main sheave is spaced apart from the cable sheave by a first distance sufficient to permit arrows to be fired from the bow free from interference by a cable without the use of a cable guard. The dual wheel assembly comprises a feed out sheave and a take in sheave separated by a second distance which is larger than the first distance. The feed out sheave is positioned substantially within a plane defined by the main sheave.
    Type: Application
    Filed: December 29, 2014
    Publication date: October 22, 2015
    Inventor: John D. Evans
  • Publication number: 20140197904
    Abstract: Multi-layer, multi-material fabrication methods include depositing at least one structural material and at least one sacrificial material during the formation of each of a plurality of layers wherein deposited materials for each layer are planarized to set a boundary level for the respective layer and wherein during formation of at least one layer at least three materials are deposited with a planarization operation occurring before deposition of the last material to set a planarization level above the layer boundary level and wherein a planarization occurs after deposition of the last material level above the layer boundary level and wherein a planarization occurs after deposition of the last material whereby the boundary level for the layer is set. Some formation processes use electrochemical fabrication techniques (e.g. including selective depositions, bulk depositions, etching operations and planarization operations) and post-deposition processes (e.g.
    Type: Application
    Filed: February 28, 2014
    Publication date: July 17, 2014
    Inventors: Elliott R. Brown, John D. Evans, Christopher A. Bang, Adam L. Cohen, Michael S. Lockard, Dennis R. Smalley, Morton Grosser
  • Patent number: 8713788
    Abstract: Multi-layer, multi-material fabrication methods include depositing at least one structural material and at least one sacrificial material during the formation of each of a plurality of layers wherein deposited materials for each layer are planarized to set a boundary level for the respective layer and wherein during formation of at least one layer at least three materials are deposited with a planarization operation occurring before deposition of the last material to set a planarization level above the layer boundary level and wherein a planarization occurs after deposition of the last material whereby the boundary level for the layer is set. Some formation processes use electrochemical fabrication techniques (e.g. including selective depositions, bulk depositions, etching operations and planarization operations) and post-deposition processes (e.g. selective etching operations and/or back filling operations).
    Type: Grant
    Filed: August 8, 2011
    Date of Patent: May 6, 2014
    Assignee: Microfabrica Inc.
    Inventors: Elliot R. Brown, John D. Evans, Christopher A. Bang, Adam L. Cohen, Michael S. Lockard, Dennis R. Smalley, Morton Grosser
  • Patent number: 8225779
    Abstract: A cable guard eliminator for a compound bow comprising a first limb and a second limb and having a bowstring and at least one cable strung between first and second connecting elements respectively mounted near outer ends of the first and second limbs. The cable guard eliminator comprises a first portion from which the cable extends to the first connecting element, a second portion from which the cable extends to the second connecting element, and, an intermediate portion defining a deflection area between the first end and the second end. The deflection area has a length in a direction generally parallel to the cable at least as long as a range of motion of the cable, such that at least some portion of the deflection area remains aligned with an arrow path throughout drawing and release of the bowstring.
    Type: Grant
    Filed: January 2, 2008
    Date of Patent: July 24, 2012
    Assignee: EVCO Technology & Development Company Ltd.
    Inventor: John D. Evans
  • Publication number: 20120007698
    Abstract: RF and microwave radiation directing or controlling components are provided that may be monolithic, that may be formed from a plurality of electrodeposition operations and/or from a plurality of deposited layers of material, that may include switches, inductors, antennae, transmission lines, filters, and/or other active or passive components. Components may include non-radiation-entry and non-radiation-exit channels that are useful in separating sacrificial materials from structural materials. Preferred formation processes use electrochemical fabrication techniques (e.g. including selective depositions, bulk depositions, etching operations and planarization operations) and post-deposition processes (e.g. selective etching operations and/or back filling operations).
    Type: Application
    Filed: August 8, 2011
    Publication date: January 12, 2012
    Inventors: Elliott R. Brown, John D. Evans, Christopher A. Bang, Adam L. Cohen, Michael S. Lockard, Dennis R. Smalley, Morton Grosser
  • Publication number: 20110080236
    Abstract: RF and microwave radiation directing or controlling components are provided that may be monolithic, that may be formed from a plurality of electrodeposition operations and/or from a plurality of deposited layers of material, that may include switches, inductors, antennae, transmission lines, filters, and/or other active or passive components. Components may include non-radiation-entry and non-radiation-exit channels that are useful in separating sacrificial materials from structural materials. Preferred formation processes use electrochemical fabrication techniques (e.g. including selective depositions, bulk depositions, etching operations and planarization operations) and post-deposition processes (e.g. selective etching operations and/or back filling operations).
    Type: Application
    Filed: October 6, 2010
    Publication date: April 7, 2011
    Inventors: Elliott R. Brown, John D. Evans, Christopher A. Bang, Adam L. Cohen, Michael S. Lockard, Dennis R. Smalley, Morton Grosser
  • Patent number: 7913680
    Abstract: The invention provides a portable bow press and a limb connector therefor, for use with a bow comprising a pair of resilient limbs that extend outwardly from a handle. The bow press is used to force the outer ends of the limbs together, thereby releasing tension on the bow string and/or cable. The user is then able to remove, replace or repair the bow string or cable while the bow press holds the bow in position. The bow press may comprise two limb connectors which hold the bow press in place. Each limb connector may comprise an outer peg and an inner peg, which are used to couple the limb connector to a bow limb.
    Type: Grant
    Filed: May 27, 2008
    Date of Patent: March 29, 2011
    Assignee: Evco Technology & Development Company, Ltd.
    Inventor: John D. Evans