Patents by Inventor John D. Hatlestad
John D. Hatlestad has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20200383638Abstract: Embodiments of the present disclosure relate to detecting implantable medical device orientation changes. In an exemplary embodiment, a medical device having a processor, comprises an acceleration sensor and memory. The acceleration sensor is configured to generate acceleration data that comprises a plurality of acceleration measurements. The memory comprises instructions that when executed by the processor, cause the processor to: obtain the acceleration data from the acceleration sensor; and determine, based on the acceleration data, that the medical device has flipped.Type: ApplicationFiled: June 8, 2020Publication date: December 10, 2020Inventors: Jonathan Bennett Shute, John D. Hatlestad, Scott R. Vanderlinde
-
Patent number: 10709892Abstract: Methods and devices for configuring the use of a motion sensor in an implantable cardiac device. The electrical signals of the patient's heart are observed and may be correlated to the physical motion of the heart as detected by the motion sensor of the implantable cardiac device in order to facilitate temporal configuration of motion sensor data collection that avoids detecting cardiac motion in favor of overall motion of the patient.Type: GrantFiled: March 26, 2018Date of Patent: July 14, 2020Assignee: CARDIAC PACEMAKERS, INC.Inventors: Michael J. Kane, William J. Linder, Benjamin J. Haasl, Paul Huelskamp, Keith R. Maile, Ron A. Balczewski, Bin Mi, John D. Hatlestad, Allan Charles Shuros
-
Patent number: 10660602Abstract: This document discusses, among other things, apparatus, systems, or methods to efficiently collect heart sound data, including detecting first heart sound information of a heart of a patient using a heart sound sensor in a first, low-power operational mode, and detecting second heart sound information of the heart using the heart sound sensor in a separate second, high-power operational mode. The operational mode of the heart sound sensor can be controlled using physiologic information from the patient, including heart sound information, information about a heart rate of the patient, or other physiologic information from the patient that indicates worsening heart failure.Type: GrantFiled: June 27, 2017Date of Patent: May 26, 2020Assignee: Cardiac Pacemakers, Inc.Inventors: Qi An, Pramodsingh Hirasingh Thakur, Keith R. Maile, Bin Mi, John D. Hatlestad
-
Patent number: 10596381Abstract: An implantable or other ambulatory medical apparatus comprises a posture sensing circuit, a physiologic sensing circuit that senses a time varying physiologic signal, and a processor circuit. The processor circuit includes a posture calculation circuit and a measurement circuit. The posture calculation circuit determines a posture of the subject using posture data obtained using the posture signal and determines when the posture of the subject is steady state. The measurement circuit derives a physiologic measurement using physiologic data extracted from the physiologic signal during at least one time period when posture is determined to be steady state and provides the physiologic measurement to at least one of a user and a process in association with the determined steady state posture.Type: GrantFiled: December 14, 2011Date of Patent: March 24, 2020Assignee: Cardiac Pacemakers, Inc.Inventors: Viktoria A. Averina, John D. Hatlestad, Abhilash Patangay, Pramodsingh Hirasingh Thakur, Yi Zhang, Kenneth C. Beck
-
Patent number: 10456049Abstract: An apparatus comprises plurality of sensors and a processor. Each sensor provides a sensor signal that includes physiological information and at least one sensor is implantable. The processor includes a physiological change event detection module that detects a physiological change event from a sensor signal and produces an indication of occurrence of one or more detected physiological change events, and a heart failure (HF) detection module. The HF detection module determines, using a first rule, whether the detected physiological change event indicative of a change in HF status of a subject, determines whether to override the first rule HF determination using a second rules, and declares whether the change in HF status occurred according to the first and second rules.Type: GrantFiled: February 23, 2017Date of Patent: October 29, 2019Assignee: Cardiac Pacemakers, Inc.Inventors: Yi Zhang, Jeffrey E. Stahmann, Krzysztof Z. Siejko, Ramesh Wariar, Julie A. Thompson, John D. Hatlestad, Kenneth C. Beck
-
Patent number: 10448899Abstract: Systems and methods for detecting cardiac conditions such as events indicative of worsening of heart failure (HF) are described. A system can receive a physiological signal from a patient, transform one or more first portions of the physiological signal into respective one or more baseline statistical values, transform one or more second portions of the physiological signal into one or more historical extreme values, and generate one or more reference values of a physiologic parameter using the baseline statistical values and the historical extreme values. The system can transform one or more third signal portions of the physiological signal into respective one or more short-term values, and produce a cardiac condition indicator using a combination of relative differences between the short-term values and the corresponding reference values. The system can output the cardiac condition indicator, or deliver therapy according to the cardiac condition indicator.Type: GrantFiled: October 27, 2016Date of Patent: October 22, 2019Assignee: Cardiac Pacemakers, Inc.Inventors: Pramodsingh Hirasingh Thakur, Qi An, Viktoria A. Averina, John D. Hatlestad, Yi Zhang
-
Patent number: 10413196Abstract: An embodiment of a device for reporting a heart failure status of a patient comprises: a parameter acquisition module configured to acquire at least one trended heart failure parameter; a predetermined event acquisition module configured to acquire at least one predetermined event corresponding to the at least one trended heart failure parameter, wherein each of the at least one predetermined event represents an event condition where a predetermined event definition is satisfied; an alert acquisition module configured to acquire at least one heart failure status alert associated with the at least one predetermined event, wherein each of the at least one alert represents an alert condition where a predetermined alert definition is satisfied; and an output communication module configured to communicate the at least one heart failure status alert.Type: GrantFiled: June 9, 2016Date of Patent: September 17, 2019Assignee: Cardiac Pacemakers, Inc.Inventors: Jeffrey E. Stahmann, John D. Hatlestad, Qingsheng Zhu
-
Publication number: 20190223782Abstract: Systems and methods for sensing respiration from a subject are discussed. An embodiment of a respiration monitoring system may include a respiration analyzer circuit to select a physiologic signal from a plurality of signals of different types indicative of respiration, such as between first and second physiologic signals that are respectively detected using first and second detection algorithms, and to compute one or more respiration parameters using the selected signal. The system may select or adjust a respiration detection algorithm for detecting the respiration parameters. The physiologic signal, or the respiration detection algorithm, may each be selected based on a signal characteristic or a patient condition. A cardiopulmonary event may be detected using the computed respiration parameter.Type: ApplicationFiled: January 14, 2019Publication date: July 25, 2019Inventors: Gezheng Wen, Pramodsingh Hirasingh Thakur, John D. Hatlestad, Jonathan Bennett Shute, Qi An, Bin Mi, Yi Zhang
-
Patent number: 10328267Abstract: A device can include a multi-dimensional posture sensor that provides an electrical sensor output representative of alignment of first, second, and third non-parallel axes of the device with the gravitational field of the earth, and a processor that includes a calibration circuit and a posture circuit. The calibration circuit measures a first sensor output for the first device axis and a second sensor output for one of a second device axis while the subject is in a first specified posture, measures sensor outputs for the first, second, and third device axes while the subject is in a second specified posture, calculates one or more coordinate transformations, generates transformed sensor outputs using the coordinate transformations, and calibrates the posture sensor by calculating a calibration transformation using the first and second sensor outputs and the transformed sensor outputs. The posture circuit determines a subsequent posture of the subject using the posture sensor.Type: GrantFiled: February 10, 2011Date of Patent: June 25, 2019Assignee: Cardiac Pacemakers, Inc.Inventors: John D. Hatlestad, Tsz Ping Chang
-
Publication number: 20190142290Abstract: This document discusses, among other things, systems and methods to determine amplitude and morphology variations of a first heart sound over a first number of cardiac cycles, and to calculate an atrial fibrillation metric indicative of an atrial fibrillation episode of the heart using the determined amplitude and morphology variations. The systems and methods can determine a variability score using the determined amplitude and morphology variations, and can calculate the atrial fibrillation metric using the variability score.Type: ApplicationFiled: December 27, 2018Publication date: May 16, 2019Inventors: Pramodsingh Hirasingh Thakur, Qi An, Bin Mi, Keith R. Maile, Howard D. Simms, JR., John D. Hatlestad
-
Publication number: 20190104959Abstract: Systems and methods for detecting atrial tachyarrhythmias (AT) such as atrial fibrillation (AF) are disclosed. A medical system can include a cardiac signal sensor circuit to sense a cardiac electrical signal and a heart sound (HS) sensor to sense heart a HS signal A cardiac electrical signal metric, including a cycle length variability or a detection of atrial electrical activity, can be generated from the cardiac electrical signal A HS metric can be generated from the HS signal, including a status of detection of S4 heart sound or a S4 heart sound intensity indicator. The system can include an AT detector circuit that can detect an AT event, such as an AF event, using the cardiac electrical signal metric and the HS metric The system can additionally classify the detected AT event as an AF or an atrial flutter event.Type: ApplicationFiled: December 10, 2018Publication date: April 11, 2019Inventors: Pramodsingh Hirasingh Thakur, Bin Mi, Howard D. Simms, JR., Qi An, John D. Hatlestad, Keith R. Maile
-
Publication number: 20190083039Abstract: A mobile device, having a processor, includes an accelerometer configured to generate acceleration data, the acceleration data including a plurality of acceleration measurements. The mobile device also includes a memory having embodied thereon computer-executable instructions that are configured to, when executed by the processor, cause the processor to: obtain the acceleration data from the accelerometer; and generate, based on the acceleration data, heart sound data, the heart sound data including data associated with one or more heart sounds.Type: ApplicationFiled: September 15, 2018Publication date: March 21, 2019Inventors: Jonathan B. Shute, Keith R. Maile, Rezwan Ahmed, Pramodsingh H. Thakur, Viktoria A. Averina, Qi An, John D. Hatlestad, Bin Mi
-
Patent number: 10194819Abstract: This document discusses, among other things, systems and methods to determine amplitude and morphology variations of a first heart sound over a first number of cardiac cycles, and to calculate an atrial fibrillation metric indicative of an atrial fibrillation episode of the heart using the determined amplitude and morphology variations. The systems and methods can determine a variability score using the determined amplitude and morphology variations, and can calculate the atrial fibrillation metric using the variability score.Type: GrantFiled: January 17, 2017Date of Patent: February 5, 2019Assignee: Cardiac Pacemakers, Inc.Inventors: Pramodsingh Hirasingh Thakur, Qi An, Bin Mi, Keith R. Maile, Howard D. Simms, Jr., John D. Hatlestad
-
Publication number: 20190029567Abstract: Embodiments include medical device systems, medical devices, including accelerometers and chemical sensors, and methods of using the same to determine the posture of a patient. In an embodiment, a medical device system herein includes an accelerometer configured to generate a signal reflecting a position of a patient, a chemical sensor configured to generate a signal reflecting physiological analyte data of the patient and a controller in electrical communication with the accelerometer and the chemical sensor. The controller can be configured to determine a posture of the patient using the position signal generated by the accelerometer and the signal generated by the chemical sensor. Other embodiments are also included herein.Type: ApplicationFiled: July 23, 2018Publication date: January 31, 2019Inventors: Jeffrey E. Stahmann, John D. Hatlestad
-
Patent number: 10182735Abstract: Systems and methods for detecting atrial tachyarrhythmias (AT) such as atrial fibrillation (AF) are disclosed. A medical system can include a cardiac signal sensor circuit to sense a cardiac electrical signal and a heart sound (HS) sensor to sense heart a HS signal. A cardiac electrical signal metric, including a cycle length variability or a detection of atrial electrical activity, can be generated from the cardiac electrical signal. A HS metric can be generated from the HS signal, including a status of detection of S4 heart sound or a S4 heart sound intensity indicator. The system can include an AT detector circuit that can detect an AT event, such as an AF event, using the cardiac electrical signal metric and the HS metric. The system can additionally classify the detected AT event as an AF or an atrial flutter event.Type: GrantFiled: October 27, 2016Date of Patent: January 22, 2019Assignee: Cardiac Pacemakers, Inc.Inventors: Pramodsingh Hirasingh Thakur, Bin Mi, Howard D. Simms, Jr., Qi An, John D. Hatlestad, Keith R. Maile
-
Patent number: 10092186Abstract: Systems, devices and methods for using environmental data to manage health care are disclosed. One aspect is an advanced patient management system. In various embodiments, the system includes at least one implantable medical device (IMD) to acquire at least one IMD parameter indicative of patient wellness, means to acquire at least one environmental parameter from at least one external source, and means to correlate the at least one parameter indicative of patient wellness and the at least one environmental parameter to assist with patient health care decisions. Other aspects and embodiments are provided herein.Type: GrantFiled: October 24, 2016Date of Patent: October 9, 2018Assignee: Cardiac Pacemakers, Inc.Inventors: John D. Hatlestad, Jeffrey E. Stahmann, Qingsheng Zhu
-
Publication number: 20180207426Abstract: Methods and devices for configuring the use of a motion sensor in an implantable cardiac device. The electrical signals of the patient's heart are observed and may be correlated to the physical motion of the heart as detected by the motion sensor of the implantable cardiac device in order to facilitate temporal configuration of motion sensor data collection that avoids detecting cardiac motion in favor of overall motion of the patient.Type: ApplicationFiled: March 26, 2018Publication date: July 26, 2018Applicant: CARDIAC PACEMAKERS, INC.Inventors: Michael J. Kane, William J. Linder, Benjamin J. Haasl, Paul Huelskamp, Keith R. Maile, Ron A. Balczewski, Bin Mi, John D. Hatlestad, Allan Charles Shuros
-
Patent number: 9993165Abstract: Patient posture information can be received, such as to indicate a change in patient posture by at least a threshold amount. A transient response signal indicative of a change in a physiological parameter can be received at multiple instances near a change in patient posture. Waveform morphology features can be extracted from a transient response signal and used to provide an indication of a cardiac status, such as a heart failure status.Type: GrantFiled: April 8, 2015Date of Patent: June 12, 2018Assignee: Cardiac Pacemakers, Inc.Inventors: Pramodsingh Hirasingh Thakur, Abhilash Patangay, John D. Hatlestad, Kenneth C. Beck
-
Patent number: 9968787Abstract: Implantable devices having motion sensors. In some examples the a configuration is generated for the implantable device to use the motion sensor in an energy preserving mode in which one or more axis of detection of the motion sensor is disabled or ignored. In some examples the motion sensor outputs along multiple axes are analyzed to determine which axes best correspond to certain patient parameters including patient motion/activity and/or cardiac contractility. In other examples the output of the motion sensor is observed across patient movements or postures to develop conversion parameters to determine a patient standard frame of reference relative to outputs of the motion sensor of an implanted device.Type: GrantFiled: August 22, 2016Date of Patent: May 15, 2018Assignee: Cardiac Pacemakers, Inc.Inventors: Michael J. Kane, William J. Linder, Ron A. Balczewski, Bin Mi, John D. Hatlestad, Paul Huelskamp, Keith R. Maile
-
Patent number: 9956414Abstract: Methods and devices for configuring the use of a motion sensor in an implantable cardiac device. The electrical signals of the patient's heart are observed and may be correlated to the physical motion of the heart as detected by the motion sensor of the implantable cardiac device in order to facilitate temporal configuration of motion sensor data collection that avoids detecting cardiac motion in favor of overall motion of the patient.Type: GrantFiled: August 22, 2016Date of Patent: May 1, 2018Assignee: CARDIAC PACEMAKERS, INC.Inventors: Michael J. Kane, William J. Linder, Benjamin J. Haasl, Paul Huelskamp, Keith R. Maile, Ron A. Balczewski, Bin Mi, John D. Hatlestad, Allan Charles Shuros