Patents by Inventor John D. Hottovy
John D. Hottovy has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 9284430Abstract: A process for component separation in a polymer production system, comprising separating a polymerization product stream into a gas stream and a polymer stream, wherein the gas stream comprises ethane and unreacted ethylene, distilling the gas stream into a light hydrocarbon stream, wherein the light hydrocarbon stream comprises ethane and unreacted ethylene, contacting the light hydrocarbon stream with an absorption solvent system, wherein at least a portion of the unreacted ethylene from the light hydrocarbon stream is absorbed by the absorption solvent system, and recovering a waste gas stream from the absorption solvent system, wherein the waste gas stream comprises ethane, hydrogen, or combinations thereof.Type: GrantFiled: May 29, 2015Date of Patent: March 15, 2016Assignee: Chevron Phillips Chemical Company LPInventors: Scott E. Kufeld, John D. Hottovy, Ai-fu Chang
-
Patent number: 9266974Abstract: An olefin polymerization process and apparatus wherein a fluid slurry comprising monomer, diluent and catalyst is circulated in a continuous loop reactor by two or more pumps. The process and apparatus allow operating the reaction at significantly higher solids content in the circulating fluid slurry. In a preferred embodiment, the fluid slurry is circulated by two impellers arranged so that the downstream impeller benefits from the rotational energy imparted by the upstream impeller. An olefin polymerization process operating at higher reactor solids by virtue of more aggressive circulation has improved efficiencies, particularly in larger-volume reactors.Type: GrantFiled: December 12, 2012Date of Patent: February 23, 2016Assignee: Chevron Phillips Chemical Company LPInventors: John D. Hottovy, Dale A. Zellers, Robert K. Franklin, III, Donald Paul Russell
-
Patent number: 9238698Abstract: Processes and systems for the production for pressure management of a polymerization product flowing from a loop polymerization reactor to a separation vessel in a slurry polymerization system are disclosed herein. For example, a process comprises withdrawing a polymerization product slurry from a loop polymerization reactor, conveying the polymerization product slurry through a first line comprising a continuous take-off valve to yield a mixture comprising a vapor phase, wherein the mixture exits the continuous take-off valve, and conveying the mixture through a second line comprising a flashline heater so that the mixture has a Froude number in a range from about 5 to about 100.Type: GrantFiled: September 22, 2014Date of Patent: January 19, 2016Assignee: CHEVRON PHILLIPS CHEMICAL COMPANY LPInventors: Scott E. Kufeld, Bruce E. Kreischer, John D. Hottovy
-
Patent number: 9221920Abstract: A manufacturing system for producing polyolefin includes a polymerization reactor, a flash chamber, and a purge column. In certain embodiments, the purge column may receive a solids stream directly from the flash chamber. Further, the purge column may function as a feed tank for an extruder within an extrusion/loadout system. According to certain embodiments, the manufacturing system may be configured to consume less than 445 kilowatt-hours of energy per metric ton of polyolefin produced based on consumption of electricity, steam, and fuel gas.Type: GrantFiled: May 23, 2014Date of Patent: December 29, 2015Assignee: Chevron Philips Chemical Company LPInventors: Robert R. McElvain, John D. Hottovy, Ralph W. Romig, Donald W. Verser, David H. Burns, John H. Tait, Richard Peacock, James E. Hein, Scott E. Kufeld, Carl W. Fenderson, Anurag Gupta, Dale A. Zellers
-
Publication number: 20150367319Abstract: A process comprises polymerizing an olefin monomer in a loop reactor in the presence of a catalyst and a diluent, and producing a slurry comprising solid particulate olefin polymer and diluent. The Biot number is maintained at or below about 3.0 within the loop reactor during the polymerizing process. The slurry in the loop reactor forms a slurry film having a film coefficient along an inner surface of the reactor wall, and the film coefficient is less than about 500 BTU·hr?1·ft?2·° F.?1.Type: ApplicationFiled: June 24, 2014Publication date: December 24, 2015Inventors: Scott E. Kufeld, Joel A. Mutchler, John D. Hottovy
-
Publication number: 20150329650Abstract: A process for making a low density polymer in a polymerization reactor system, the process comprising polymerizing an olefin monomer, and optionally an olefin comonomer, in the presence of a diluent in a polymerization reactor to make a polymerization product slurry consisting of a liquid phase and a solid phase, wherein the solid phase comprises an olefin polymer having a density of between about 0.905 g/cm3 to about 0.945 g/cm3; and discharging the polymerization product slurry from the polymerization reactor through a continuous take-off valve to make a mixture further comprising a vapor phase. The mixture comprises a pressure less than a bubble point pressure of a component in the polymerization product slurry.Type: ApplicationFiled: July 28, 2015Publication date: November 19, 2015Inventors: John D. Hottovy, Scott E. Kufeld
-
Patent number: 9187383Abstract: A process for component separation in a polymer production system, comprising separating a polymerization product stream into a gas stream and a polymer stream, wherein the gas stream comprises ethane and unreacted ethylene, distilling the gas stream into a light hydrocarbon stream, wherein the light hydrocarbon stream comprises ethane and unreacted ethylene, contacting the light hydrocarbon stream with an absorption solvent system, wherein at least a portion of the unreacted ethylene from the light hydrocarbon stream is absorbed by the absorption solvent system, and recovering a waste gas stream from the absorption solvent system, wherein the waste gas stream comprises ethane, hydrogen, or combinations thereof.Type: GrantFiled: April 30, 2015Date of Patent: November 17, 2015Assignee: CHEVRON PHILLIPS CHEMICAL COMPANY LPInventors: Scott E. Kufeld, John D. Hottovy, Ai-fu Chang
-
Patent number: 9180405Abstract: A process for recovery of ethylene from a polymerization product stream of a polyethylene production system, comprising separating a light gas stream from the polymerization product stream, wherein the light gas stream comprises ethane and unreacted ethylene, contacting the light gas stream with an absorption solvent system, wherein the contacting the light gas stream with the absorption solvent system occurs at a temperature in a range of from about 40° F. to about 110° F., wherein at least a portion of the unreacted ethylene from the light gas stream is absorbed by the absorption solvent system, and recovering unreacted ethylene from the absorption solvent system to yield recovered ethylene.Type: GrantFiled: April 13, 2012Date of Patent: November 10, 2015Assignee: Chevron Phillips Chemical Company LPInventors: John D. Hottovy, Ai-fu Chang
-
Patent number: 9163564Abstract: The present techniques provide systems and methods for recovering energy from flare gases in chemical plants and refineries. The systems use an engine to burn a portion of gas diverted from the flare system. The engine may be a reciprocating engine, or a burner in a boiler system, among others. The power generated by burning the flare gas is then used to power an energy recovery device. The energy recovery device may be an electrical generator, a compressor, or a steam boiler, among others.Type: GrantFiled: June 21, 2010Date of Patent: October 20, 2015Assignee: Chevron Phillips Chemical Company LPInventor: John D. Hottovy
-
Publication number: 20150267027Abstract: A process for component separation in a polymer production system, comprising separating a polymerization product stream into a gas stream and a polymer stream, wherein the gas stream comprises ethane and unreacted ethylene, distilling the gas stream into a light hydrocarbon stream, wherein the light hydrocarbon stream comprises ethane and unreacted ethylene, contacting the light hydrocarbon stream with an absorption solvent system, wherein at least a portion of the unreacted ethylene from the light hydrocarbon stream is absorbed by the absorption solvent system, and recovering a waste gas stream from the absorption solvent system, wherein the waste gas stream comprises ethane, hydrogen, or combinations thereof.Type: ApplicationFiled: May 29, 2015Publication date: September 24, 2015Inventors: Scott E. Kufeld, John D. Hottovy, Ai-fu Chang
-
Patent number: 9120886Abstract: A process for making a low density polymer in a polymerization reactor system, the process comprising polymerizing an olefin monomer, and optionally an olefin comonomer, in the presence of a diluent in a polymerization reactor to make a polymerization product slurry consisting of a liquid phase and a solid phase, wherein the solid phase comprises an olefin polymer having a density of between about 0.905 g/cm3 to about 0.945 g/cm3; and discharging the polymerization product slurry from the polymerization reactor through a continuous take-off valve to make a mixture further comprising a vapor phase. The mixture comprises a pressure less than a bubble point pressure of a component in the polymerization product slurry.Type: GrantFiled: July 31, 2014Date of Patent: September 1, 2015Assignee: CHEVRON PHILLIPS CHEMICAL COMPANY LPInventors: John D. Hottovy, Scott E. Kufeld
-
Publication number: 20150232396Abstract: A process for component separation in a polymer production system, comprising separating a polymerization product stream into a gas stream and a polymer stream, wherein the gas stream comprises ethane and unreacted ethylene, distilling the gas stream into a light hydrocarbon stream, wherein the light hydrocarbon stream comprises ethane and unreacted ethylene, contacting the light hydrocarbon stream with an absorption solvent system, wherein at least a portion of the unreacted ethylene from the light hydrocarbon stream is absorbed by the absorption solvent system, and recovering a waste gas stream from the absorption solvent system, wherein the waste gas stream comprises ethane, hydrogen, or combinations thereof.Type: ApplicationFiled: April 30, 2015Publication date: August 20, 2015Inventors: Scott E. Kufeld, John D. Hottovy, Ai-fu Chang
-
Patent number: 9108147Abstract: A process for component separation in a polymer production system, comprising separating a polymerization product stream into a gas stream and a polymer stream, wherein the gas stream comprises ethane and unreacted ethylene, distilling the gas stream into a light hydrocarbon stream, wherein the light hydrocarbon stream comprises ethane and unreacted ethylene, contacting the light hydrocarbon stream with an absorption solvent system, wherein at least a portion of the unreacted ethylene from the light hydrocarbon stream is absorbed by the absorption solvent system, and recovering a waste gas stream from the absorption solvent system, wherein the waste gas stream comprises ethane, hydrogen, or combinations thereof.Type: GrantFiled: April 13, 2012Date of Patent: August 18, 2015Assignee: CHEVRON PHILLIPS CHEMICAL COMPANY LPInventors: Scott E. Kufeld, John D. Hottovy, Ai-fu Chang
-
Patent number: 8992840Abstract: Multiple components are selected, conveyed, and measured in a polymerization system. A control system adjusts the system variables to the desired values. Portions of the components can be fed to a pre-contactor before introduction into the polymerization reactor. The catalyst component concentrations and residence times are tightly controlled in the pre-contactor to affect product properties. The pre-contactor can be a single or multiple combinations of a CSTR or plug flow pre-contactors.Type: GrantFiled: September 8, 2009Date of Patent: March 31, 2015Assignee: Chevron Phillips Chemical Company LPInventors: David H. Burns, Donald W. Verser, Elizabeth A. Benham, Max P. McDaniel, John D. Hottovy, Clay K Thurman, David A. Lockman, John O. Lawmaster, Matthew T. Haberly, Thomas H. Smith, Jerry T. Lanier, Matthew G. Thorn, Penny A. Zellers
-
Patent number: 8932527Abstract: Loop reactors for olefin polymerization and processes utilizing such loop reactors are described herein. In one or more embodiments, the loop reactor generally includes a plurality of vertical sections; a plurality of elbow sections connecting the vertical sections to either a horizontal section having a horizontal length (LH) or another elbow section, at least one elbow section having an internal diameter (d), a radius (Rc) of an inner curvature and a chord length (W) and wherein the horizontal length (LH) is from 0 feet to 3 feet, the chord length (W) is 250 inches or less and a ratio (Rc/d) of the radius (Rc) of the inner curvature to the internal diameter (d) of the at least one elbow section is maintained from 2 to 4; and at least one loop reaction zone configured to polymerize an olefin monomer in the presence of a liquid diluent into a slurry comprising particles of a polyolefin polymer.Type: GrantFiled: August 17, 2014Date of Patent: January 13, 2015Assignee: Chevron Phillips Chemical Co.Inventors: Scott E. Kufeld, Joel A. Mutchler, Ralph W. Romig, John D Stewart, Catherine M Gill, Bruce E. Kreischer, John D. Hottovy
-
Publication number: 20150011718Abstract: Processes and systems for the production for pressure management of a polymerization product flowing from a loop polymerization reactor to a separation vessel in a slurry polymerization system are disclosed herein. For example, a process comprises withdrawing a polymerization product slurry from a loop polymerization reactor, conveying the polymerization product slurry through a first line comprising a continuous take-off valve to yield a mixture comprising a vapor phase, wherein the mixture exits the continuous take-off valve, and conveying the mixture through a second line comprising a flashline heater so that the mixture has a Froude number in a range from about 5 to about 100.Type: ApplicationFiled: September 22, 2014Publication date: January 8, 2015Inventors: Scott E. Kufeld, Bruce E. Kreischer, John D. Hottovy
-
Patent number: 8921498Abstract: Processes and systems for the production for pressure management of a polymerization product flowing from a loop polymerization reactor to a separation vessel in a slurry polymerization system are disclosed herein. For example, a process comprises withdrawing the polymerization product from a loop polymerization reactor, and conveying the withdrawn polymerization product to a separation vessel via a first pressure differential and a second pressure differential. The withdrawn polymerization product may flow through the first pressure differential before flowing through the second pressure differential, and the first pressure differential may be less than the second pressure differential.Type: GrantFiled: October 31, 2012Date of Patent: December 30, 2014Assignee: Chevron Phillips Chemical Company LPInventors: Scott E. Kufeld, Bruce E. Kreischer, John D. Hottovy
-
Publication number: 20140343236Abstract: A process for making a low density polymer in a polymerization reactor system, the process comprising polymerizing an olefin monomer, and optionally an olefin comonomer, in the presence of a diluent in a polymerization reactor to make a polymerization product slurry consisting of a liquid phase and a solid phase, wherein the solid phase comprises an olefin polymer having a density of between about 0.905 g/cm3 to about 0.945 g/cm3; and discharging the polymerization product slurry from the polymerization reactor through a continuous take-off valve to make a mixture further comprising a vapor phase. The mixture comprises a pressure less than a bubble point pressure of a component in the polymerization product slurry.Type: ApplicationFiled: July 31, 2014Publication date: November 20, 2014Inventors: John D. Hottovy, Scott E. Kufeld
-
Patent number: 8883940Abstract: Processes and systems for the production for pressure management of a polymerization product flowing from a loop polymerization reactor to a separation vessel in a slurry polymerization system are disclosed herein. For example, a process comprises withdrawing the polymerization product from a loop polymerization reactor, and conveying the withdrawn polymerization product to a separation vessel via a first pressure differential and a second pressure differential. The withdrawn polymerization product may flow through the first pressure differential before flowing through the second pressure differential, and the first pressure differential may be less than the second pressure differential.Type: GrantFiled: February 27, 2013Date of Patent: November 11, 2014Assignee: Chevron Phillips Chemical Company LPInventors: Scott E. Kufeld, Bruce E. Kreischer, John D. Hottovy
-
Patent number: 8871886Abstract: A process for making a low density polymer in a polymerization reactor system, the process comprising polymerizing an olefin monomer, and optionally an olefin comonomer, in the presence of a diluent in a polymerization reactor to make a polymerization product slurry consisting of a liquid phase and a solid phase, wherein the solid phase comprises an olefin polymer having a density of between about 0.905 g/cm3 to about 0.945 g/cm3; and discharging the polymerization product slurry from the polymerization reactor through a continuous take-off valve to make a mixture further comprising a vapor phase. The mixture comprises a pressure less than a bubble point pressure of a component in the polymerization product slurry.Type: GrantFiled: May 3, 2013Date of Patent: October 28, 2014Assignee: Chevron Phillips Chemical Company LPInventors: John D. Hottovy, Scott E. Kufeld