Patents by Inventor John D. Larson, III

John D. Larson, III has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6954121
    Abstract: An apparatus such as a thin film resonator has a bottom electrode, a top electrode, and a composite layer between the two electrodes. The composite layer includes a piezoelectric (PZ) layer having a first coupling coefficient and a coupling coefficient control (CCC) layer having a second coupling coefficient. By varying the relative thicknesses of the PZ layer and the CCC layer during the manufacturing process, the coupling coefficient of the resonator can be established (to any value between the first coupling coefficient and the second coupling coefficient) with minimal impact on resonant frequency. Further, it is relatively less difficult to fabricate the PZ layer and the CCC layer having the desired coupling coefficient (as a combination of the first coupling coefficient and the second coupling coefficient) compared to the difficulties of fabrication of a uniform PZ layer having the desired coupling coefficient.
    Type: Grant
    Filed: June 9, 2003
    Date of Patent: October 11, 2005
    Assignee: Agilent Technologies, Inc.
    Inventors: Paul D. Bradley, Yury Oshmyansky, Benjamin Yu, John D. Larson, III
  • Patent number: 6946928
    Abstract: The acoustically-coupled transformer includes first and second stacked bulk acoustic resonators (SBARs), each having a stacked pair of film bulk acoustic resonators (FBARs) with an acoustic decoupler between them. In one embodiment, the acoustic decoupler comprises a layer of decoupling material has having a nominal thickness equal to an odd integral multiple of one quarter of the wavelength of an acoustic wave having a frequency equal to the transformer's center frequency. In another embodiment, the acoustic decoupler comprises a Bragg stack. Each FBAR has opposed planar electrodes with piezoelectric material between them. The transformer additionally has first terminals, second terminals, a first electrical circuit connecting one FBARs of the first SBAR to one FBAR of the second SBAR and the first terminals, and a second electrical circuit connecting the other FBAR of the first SBAR to the other FBAR of the second SBAR and the second terminals.
    Type: Grant
    Filed: October 30, 2003
    Date of Patent: September 20, 2005
    Assignee: Agilent Technologies, Inc.
    Inventors: John D. Larson, III, Richard C. Ruby
  • Patent number: 6927651
    Abstract: Acoustic resonator devices having multiple resonant frequencies and methods of making the same are described. In one aspect, an acoustic resonator device includes an acoustic resonant structure that includes first and second electrodes and first and second piezoelectric layers. The first and second electrodes abut opposite sides of a resonant volume free of any interposing electrodes. The first and second piezoelectric layers are disposed for acoustic vibrations in the resonant volume and have different respective acoustical resonance characteristics and respective piezoelectric axes oriented in different directions. The acoustic resonant structure has resonant electric responses at first and second resonant frequencies respectively determined at least in part by the acoustical resonance characteristics of the first and second piezoelectric layers.
    Type: Grant
    Filed: May 12, 2003
    Date of Patent: August 9, 2005
    Assignee: Agilent Technologies, Inc.
    Inventors: John D. Larson, III, Yury Oshmyansky
  • Patent number: 6874211
    Abstract: A method for fabricating a resonator, and in particular, a thin film bulk acoustic resonator (FBAR), and a resonator embodying the method are disclosed. An FBAR is fabricated on a substrate by reducing mass from a top electrode layer. For a substrate having multiple resonators, mass is reduced from only selected resonator to provide resonators having different resonance frequencies on the same substrate.
    Type: Grant
    Filed: March 5, 2001
    Date of Patent: April 5, 2005
    Assignee: Agilent Technologies, Inc.
    Inventors: Paul D. Bradley, John D. Larson, III, Richard C. Ruby
  • Patent number: 6824653
    Abstract: A magnetron with mechanisms for smoothly and continuously adjusting a DC power applied to its targets to compensate for the changes in the sputtering characteristics of the targets that occur with target aging. A magnetron according to the present teachings includes a set of concentric targets for sputtering a film onto a wafer in response to an AC power and a DC power applied to the targets and a power controller that adjusts the DC power. The adjustments to the DC power enable the magnetron to maintain uniformity in the thicknesses of films formed with the magnetron throughout the life of its targets.
    Type: Grant
    Filed: February 21, 2003
    Date of Patent: November 30, 2004
    Assignee: Agilent Technologies, Inc
    Inventors: Yury Oshmyansky, Sergey Mishin, Richard C. Ruby, John D. Larson, III
  • Patent number: 6787048
    Abstract: A method for fabricating a resonator, and in particular, a thin film bulk acoustic resonator (FBAR), and a resonator embodying the method are disclosed. The resonator is fabricated on a substrate by fabricating a bottom electrode layer and a piezoelectric (PZ) layer over the bottom electrode layer. A selected portion of the PZ layer is partially etched. Then, a top electrode is fabricated over the selected portion of the PZ layer.
    Type: Grant
    Filed: March 5, 2001
    Date of Patent: September 7, 2004
    Assignee: Agilent Technologies, Inc.
    Inventors: Paul D. Bradley, Richard C. Ruby, John D. Larson, III
  • Patent number: 6668618
    Abstract: Systems and methods of monitoring thin film deposition are described. In one aspect, a thin film deposition sensor includes an acoustical resonator (e.g., a thin film bulk acoustical resonator) that has an exposed surface and is responsive to thin film material deposits on the exposed surface. A substrate clip may be configured to attach the thin film deposition sensor to a substrate. A transceiver circuit may be configured to enable the thin film deposition sensor to be interrogated wirelessly. A method of monitoring a thin film deposition on a substrate also is described.
    Type: Grant
    Filed: April 23, 2001
    Date of Patent: December 30, 2003
    Assignee: Agilent Technologies, Inc.
    Inventors: John D. Larson, III, Herbert L. Ko, Richard K. Karlquist, Mark A. Hueschen, Kent W. Carey
  • Patent number: 6651488
    Abstract: Systems and methods of monitoring thin film deposition are described. In one aspect, a thin film deposition sensor includes an acoustical resonator (e.g., a thin film bulk acoustical resonator) that has an exposed surface and is responsive to thin film material deposits on the exposed surface. A substrate clip may be configured to attach the thin film deposition sensor to a substrate. A transceiver circuit may be configured to enable the thin film deposition sensor to be interrogated wirelessly. A method of monitoring a thin film deposition on a substrate also is described.
    Type: Grant
    Filed: October 7, 2002
    Date of Patent: November 25, 2003
    Assignee: Agilent Technologies, Inc.
    Inventors: John D. Larson, III, Herbert L. Ko, Richard K. Karlquist, Mark A. Hueschen, Kent W. Carey
  • Patent number: 6617249
    Abstract: A method for fabricating a resonator, and in particular, a thin film bulk acoustic resonator (FBAR), and a resonator embodying the method are disclosed. An FBAR is fabricated on a substrate by introducing a mass loading top electrode layer. For a substrate having multiple resonators, the top mass loading electrode layer is introduced for only selected resonator to provide resonators having different resonance frequencies on the same substrate.
    Type: Grant
    Filed: March 5, 2001
    Date of Patent: September 9, 2003
    Assignee: Agilent Technologies, Inc.
    Inventors: Richard C. Ruby, John D. Larson, III, Paul D. Bradley
  • Patent number: 6566979
    Abstract: A method for fabricating a resonator, and in particular, a thin film bulk acoustic resonator (FBAR), and a resonator embodying the method are disclosed. A resonator is fabricated on a substrate, and its top electrode 56 is oxidized to form a oxide layer 58. For a substrate having multiple resonators, the top electrode 56 of only selected resonator is oxidized to provide resonators having different resonance frequencies on the same substrate.
    Type: Grant
    Filed: March 5, 2001
    Date of Patent: May 20, 2003
    Assignee: Agilent Technologies, Inc.
    Inventors: John D. Larson, III, Richard C. Ruby, Paul D. Bradley
  • Patent number: 6550664
    Abstract: A device includes a die that contains a filter circuit. The filter is implemented using film bulk acoustic resonators. A package contains the die. The package includes a base portion. Signal paths are incorporated in the base portion. Solder joints attach the die to the base portion. The solder joints electrically connect pads on the die to the signal paths in the base portion. The solder joints do not include, and are used instead of, wire bonds.
    Type: Grant
    Filed: December 9, 2000
    Date of Patent: April 22, 2003
    Assignee: Agilent Technologies, Inc.
    Inventors: Paul Bradley, John D. Larson, III, Richard C. Ruby
  • Patent number: 6542055
    Abstract: In one embodiment, an N-stage ladder circuit is serially connected to a bridge (lattice circuit. The N-stage ladder circuit receives differential inputs, e.g. mixers, while the bridge lattice circuit outputs a singled end output, e.g. amplifier. In another embodiment, a bridge lattice circuit is serially connected to an N-stage ladder circuit. The bridge lattice circuit receives a single ended load while the N-stage ladder circuit provides a differential output. Film bulk acoustic resonators are used in the combination ladder and lattice structure for both embodiments to provide the necessary band-pass functionality as well as make the necessary transition from differential to single ended load.
    Type: Grant
    Filed: October 31, 2000
    Date of Patent: April 1, 2003
    Assignee: Agilent Technologies, Inc.
    Inventors: Michael L. Frank, John D Larson, III
  • Patent number: 6483229
    Abstract: A method for fabricating a resonator, and in particular, a thin film bulk acoustic resonator (FBAR), and a resonator embodying the method are disclosed. An FBAR is fabricated on a substrate by mass loading piezoelectric (PZ) layer between two electrodes. For a substrate having multiple resonators, only selected resonator is mass loaded to provide resonators having different resonance frequencies on the same substrate.
    Type: Grant
    Filed: March 5, 2001
    Date of Patent: November 19, 2002
    Assignee: Agilent Technologies, Inc.
    Inventors: John D. Larson, III, Paul D. Bradley, Richard C. Ruby
  • Patent number: 6472954
    Abstract: In an array of acoustic resonators, the effective coupling coefficient of first and second filters are individually tailored in order to achieve desired frequency responses. In a duplexer embodiment, the effective coupling coefficient of a transmit band-pass filter is lower than the effective coupling coefficient of a receive band-pass filter of the same duplexer. In one embodiment, the tailoring of the coefficients is achieved by varying the ratio of the thickness of a piezoelectric layer to the total thickness of electrode layers. For example, the total thickness of the electrode layers of the transmit filter may be in the range of 1.2 to 2.8 times the total thickness of the electrode layers of the receive filter. In another embodiment, the coefficient tailoring is achieved by forming a capacitor in parallel with an acoustic resonator within the filter for which the effective coupling coefficient is to be degraded.
    Type: Grant
    Filed: April 23, 2001
    Date of Patent: October 29, 2002
    Assignee: Agilent Technologies, Inc.
    Inventors: Richard C. Ruby, Paul Bradley, Domingo Figueredo, John D. Larson, III, Yury Oshmyansky
  • Publication number: 20020153965
    Abstract: In an array of acoustic resonators, the effective coupling coefficient of first and second filters are individually tailored in order to achieve desired frequency responses. In a duplexer embodiment, the effective coupling coefficient of a transmit band-pass filter is lower than the effective coupling coefficient of a receive band-pass filter of the same duplexer. In one embodiment, the tailoring of the coefficients is achieved by varying the ratio of the thickness of a piezoelectric layer to the total thickness of electrode layers. For example, the total thickness of the electrode layers of the transmit filter may be in the range of 1.2 to 2.8 times the total thickness of the electrode layers of the receive filter. In another embodiment, the coefficient tailoring is achieved by forming a capacitor in parallel with an acoustic resonator within the filter for which the effective coupling coefficient is to be degraded.
    Type: Application
    Filed: April 23, 2001
    Publication date: October 24, 2002
    Inventors: Richard C. Ruby, Paul Bradley, Domingo Figueredo, John D. Larson III, Yury Oshmyansky
  • Patent number: 6469597
    Abstract: A method for fabricating a resonator, and in particular, a thin film bulk acoustic resonator (FBAR), and a resonator embodying the method are disclosed. An FBAR is fabricated on a substrate by introducing a mass loading electrode to a bottom electrode layer. For a substrate having multiple resonators, mass loading bottom electrode is introduced for only selected resonator to provide resonators having different resonance frequencies on the same substrate.
    Type: Grant
    Filed: March 5, 2001
    Date of Patent: October 22, 2002
    Assignee: Agilent Technologies, Inc.
    Inventors: Richard C. Ruby, Paul D. Bradley, John D. Larson, III
  • Patent number: 6424237
    Abstract: A bulk acoustic resonator having a high quality factor is formed on a substrate having a depression formed in a top surface of the substrate. The resonator includes a first electrode, a piezoelectric material and a second electrode. The first electrode is disposed on the top surface of the substrate and extends beyond the edges of the depression by a first distance to define a first region therebetween. The piezoelectric material is disposed on the top surface of the substrate and over the first electrode, and the second electrode is disposed on the piezoelectric material. The second electrode includes a portion that is located above the depression. The portion of the second electrode that is located over the depression has at least one edge that is offset from a corresponding edge of the depression by a second distance to define a second region therebetween. The first and second regions have different impedances, as a result of the different materials located in the two regions.
    Type: Grant
    Filed: December 21, 2000
    Date of Patent: July 23, 2002
    Assignee: Agilent Technologies, Inc.
    Inventors: Richard C. Ruby, John D. Larson, III, Paul D. Bradley
  • Patent number: 6262637
    Abstract: An FBAR-based duplexer that comprises a first port, a second port, a third port, a first band-pass filter connected between the first port and the third port and a series circuit connected between the second port and the third port. The first band-pass filter includes a first ladder circuit having shunt and series elements. Each of the elements of the first ladder circuit comprises a film bulk acoustic resonator (FBAR). The series circuit includes a 90° phase shifter in series with a second band-pass filter. The second band-pass filter includes a second ladder circuit having shunt and series elements. Each of the elements of the second ladder circuit comprises a film bulk acoustic resonator. A band-pass filter comprising shunt elements and series elements in which the series elements and the shunt elements are connected to form a ladder circuit, and each of the elements includes a film bulk acoustic resonator (FBAR).
    Type: Grant
    Filed: June 2, 1999
    Date of Patent: July 17, 2001
    Assignee: Agilent Technologies, Inc.
    Inventors: Paul D. Bradley, John D. Larson, III, Richard C. Ruby
  • Patent number: 6215375
    Abstract: A bulk acoustic wave device that provides a high spectral purity, high Q, resonator in the radio frequency and microwave frequency ranges. Such resonators may be coupled together to form filters or other frequency selective devices. The bulk acoustical wave filter is constructed from a piezoelectric (PZ) material having a first surface and a second surface and first and second electrodes. The first electrode includes an electrically conducting layer on the first surface, and the second electrode includes an electrically conducting layer on the second surface. The first electrode overlies at least a portion of the second electrode, the portion of the first electrode that overlies the second electrode has a periphery which is a non-rectangular, irregular polygon. In the preferred embodiment of the present invention, the periphery is a three-sided, four-sided, or n-sided irregular polygon in which no two sides are parallel to one another.
    Type: Grant
    Filed: March 30, 1999
    Date of Patent: April 10, 2001
    Assignee: Agilent Technologies, Inc.
    Inventors: John D. Larson, III, Richard C. Ruby, Paul Bradley
  • Patent number: 5661445
    Abstract: A superconductive magnet assembly is disclosed. The superconductive magnet assembly includes a primary magnet formed of a coil of superconductive material, a magnet former supporting the primary coil, a plurality of gradient coils of superconductive material operative to produce field gradients during operation of the magnet, and a radiation shield within which the primary coil and the gradient coils are housed. The gradient coils are supported by the magnet former.
    Type: Grant
    Filed: May 30, 1996
    Date of Patent: August 26, 1997
    Assignee: Hewlett-Packard Company
    Inventors: John D. Larson, III, Jeremy A. Good