Patents by Inventor John D McNicol

John D McNicol has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9178624
    Abstract: A digital signal processor (DSP) may receive a signal that has an x-polarization (x-pol) and a y-polarization (y-pol). The DSP may equalize the x-pol of the signal and the y-pol of the signal based on filter coefficients determined using a constant modulus algorithm (CMA). The DSP may perform phase correction on the equalized x-pol signal and the equalized y-pol signal. The DSP may identify a first frame header pattern within the phase-corrected x-pol signal, and may identify a second frame header pattern within the phase-corrected y-pol signal. The DSP may determine, based on the first frame header pattern and the second frame header pattern, a quantity of lock-in differential group delay (DGD). The device may adjust one or more of the filter coefficients to remove the quantity of lock-in DGD and to permit an amount of polarization mode dispersion to be determined based on the filter coefficients.
    Type: Grant
    Filed: March 31, 2014
    Date of Patent: November 3, 2015
    Assignee: Infinera Corporation
    Inventors: Han H. Sun, Kuang-Tsan Wu, Ahmed Awadalla, John D. Mcnicol
  • Patent number: 9166696
    Abstract: An apparatus including a photodiode, a low pass filter, an analog-to-digital converter, an interpolation circuit and a digital signal processor is disclosed. The photodiode receives a portion of a plurality of optical signals, each of which is modulated in accordance with a corresponding one of a plurality of data streams, and each having a corresponding one of a plurality of wavelengths. The photodiode supplies an electrical output. The low-pass filter supplies a filtered output in response to the electrical output. The analog-to-digital converter is configured to sample the filtered output at a first sampling rate to generate a plurality of first data samples. The interpolation circuit is configured to receive the plurality of first data samples and supply a plurality of second data samples at a second sampling rate less the first sampling rate. The digital signal processor circuit is configured to receive the plurality of second data samples.
    Type: Grant
    Filed: August 28, 2014
    Date of Patent: October 20, 2015
    Assignee: Infinera Corporation
    Inventors: Kuang-Tsan Wu, John D. McNicol, David F. Welch, Stephen G. Grubb, Pierre Mertz
  • Publication number: 20150280833
    Abstract: A digital signal processor (DSP) may receive a signal that has an x-polarization (x-pol) and a y-polarization (y-pol). The DSP may equalize the x-pol of the signal and the y-pol of the signal based on filter coefficients determined using a constant modulus algorithm (CMA). The DSP may perform phase correction on the equalized x-pol signal and the equalized y-pol signal. The DSP may identify a first frame header pattern within the phase-corrected x-pol signal, and may identify a second frame header pattern within the phase-corrected y-pol signal. The DSP may determine, based on the first frame header pattern and the second frame header pattern, a quantity of lock-in differential group delay (DGD). The device may adjust one or more of the filter coefficients to remove the quantity of lock-in DGD and to permit an amount of polarization mode dispersion to be determined based on the filter coefficients.
    Type: Application
    Filed: March 31, 2014
    Publication date: October 1, 2015
    Applicant: Infinera Corporation
    Inventors: Han H. Sun, Kuang-Tsan Wu, Ahmed Awadalla, John D. Mcnicol
  • Patent number: 9130681
    Abstract: An optical transmitter may include an optical source to provide a first optical signal having a varying frequency; an optical circuit to receive a portion of the first optical signal and provide a second optical signal corresponding to a change in frequency of the first optical signal; a photodetector to receive the first optical signal and provide an electrical signal that is indicative of the change in frequency of the first optical signal; an integrator to receive the electrical signal and provide an inverted electrical signal; and a controller to process the inverted electrical signal and provide a current, associated with the inverted electrical signal, to the optical source. The optical source may reduce the phase noise associated with the first optical signal based on the current.
    Type: Grant
    Filed: March 27, 2013
    Date of Patent: September 8, 2015
    Assignee: Infinera Corporation
    Inventors: Han H. Sun, John D. McNicol, Kuang-Tsan Wu
  • Patent number: 9124371
    Abstract: Consistent with the present disclosure, data, in digital form, is received by a transmit node of an optical communication system, and is then provided to a modulator that, in turn, modulates light, received from an optical source at one of a plurality of periodically and preferably minimally spaced wavelengths. The plurality of periodically spaced wavelengths or carriers are grouped together with minimal carrier spacing, to form a superchannel. The carrier spacing between adjacent carriers is determined by detecting a beat frequency of a combined optical signal that includes the outputs of two adjacent optical sources. The beat frequency corresponds to a frequency difference between the outputs of the adjacent carriers. This frequency difference should correspond to a desired carrier spacing between each of the plurality of carriers.
    Type: Grant
    Filed: April 1, 2011
    Date of Patent: September 1, 2015
    Assignee: Infinera Corporation
    Inventors: John D. McNicol, Michael Francis Van Leeuwen, Pierre Mertz, Hai Xu
  • Publication number: 20150188642
    Abstract: An optical receiver receives an optical signal with a phase error and pilot symbols, and converts the optical signal into an electrical signal. The optical receiver identifies, based on the pilot symbols, a cycle slip due to the phase error and associated with a transition time. The optical receiver determines, based on the pilot symbols, a direction and a center of the cycle slip, and generates a rotation value based on the direction and the center. The optical receiver applies the rotation value to minimize the phase error in the electrical signal except for phase error associated with the transition time and to generate a modified electrical signal. The optical receiver generates an erase signal based on the transition time and the center of the cycle slip, and uses the erase signal to minimize an effect of the phase error associated with the transition time of the cycle slip.
    Type: Application
    Filed: December 26, 2013
    Publication date: July 2, 2015
    Applicant: Infinera Corp.
    Inventors: Han H. SUN, John D. McNicol, Kuang-Tsan Wu
  • Publication number: 20140369698
    Abstract: An apparatus including a photodiode, a low pass filter, an analog-to-digital converter, an interpolation circuit and a digital signal processor is disclosed. The photodiode receives a portion of a plurality of optical signals, each of which is modulated in accordance with a corresponding one of a plurality of data streams, and each having a corresponding one of a plurality of wavelengths. The photodiode supplies an electrical output. The low-pass filter supplies a filtered output in response to the electrical output. The analog-to-digital converter is configured to sample the filtered output at a first sampling rate to generate a plurality of first data samples. The interpolation circuit is configured to receive the plurality of first data samples and supply a plurality of second data samples at a second sampling rate less the first sampling rate. The digital signal processor circuit is configured to receive the plurality of second data samples.
    Type: Application
    Filed: August 28, 2014
    Publication date: December 18, 2014
    Inventors: Kuang-Tsan Wu, John D. McNicol, David F. Welch, Stephen G. Grubb, Pierre Mertz
  • Publication number: 20140328584
    Abstract: An optical transmitter may include an optical source to provide a first optical signal having a varying frequency; an optical circuit to receive a portion of the first optical signal and provide a second optical signal corresponding to a change in frequency of the first optical signal; a photodetector to receive the first optical signal and provide an electrical signal that is indicative of the change in frequency of the first optical signal; an integrator to receive the electrical signal and provide an inverted electrical signal; and a controller to process the inverted electrical signal and provide a current, associated with the inverted electrical signal, to the optical source. The optical source may reduce the phase noise associated with the first optical signal based on the current.
    Type: Application
    Filed: March 27, 2013
    Publication date: November 6, 2014
    Applicant: Infinera Corporation
    Inventors: Han H. Sun, John D. McNicol, Kuang-Tsan Wu
  • Patent number: 8861977
    Abstract: A number of carriers are selected according to a modulation format and symbol rate to realize a superchannel having fixed capacity, for example. At a receive node, the superchannel is optically demultiplexed from a plurality of other superchannels. The plurality of carriers are then supplied to a photodetector circuit, which receives additional light at one of the optical signal carrier wavelengths from a local oscillator laser. An analog-to-digital converter (ADC) is provided in the receive node to convert the electrical signals output from the photodetector into digital form. The output from the ADC is then filtered in the electrical domain, such that optical demultiplexing of the carriers is unnecessary.
    Type: Grant
    Filed: April 1, 2011
    Date of Patent: October 14, 2014
    Assignee: Infinera Corporation
    Inventors: John D. McNicol, Matthew L. Mitchell, David F. Welch
  • Publication number: 20140294381
    Abstract: An optical system may include optical transmitters to provide respective optical signals. Each of the respective optical signals may provide one or more carriers in an optical channel. The optical channel may include multiple carriers associated with the respective optical signals. First and second carriers, of the multiple carriers, may have a particular carrier space width. The particular carrier space width may include a frequency error associated with one or more optical signals of the respective optical signals. The optical system may include a control system to determine the frequency error and cause one or more of the optical transmitters to adjust the particular carrier space width based on the adjusted frequency error.
    Type: Application
    Filed: March 29, 2013
    Publication date: October 2, 2014
    Applicant: INFINERA CORPORATION
    Inventors: John D. MCNICOL, Han H. SUN, David J. KRAUSE
  • Patent number: 8831439
    Abstract: Consistent with the present disclosure, data, in digital form, is received by a transmit nodes of an optical communication, and converted to analog signal by a digital-to-analog converter (DAC) to drive a modulator. The modulator, in turn, modulates light at one of a plurality of wavelengths in accordance with the received data. The modulated light is then transmitted over an optical communication path to a receive node. At the receive node, the modulated optical signal, as well as other modulated optical signals are supplied to a photodetector circuit, which receives additional light at one of the optical signal wavelengths from a local oscillator laser. An analog-to-digital converter (ADC) is provided in the receive node to convert the electrical signals output from the photodetector into digital form. The output from the ADC is then filtered in the electrical domain, such that optical demultiplexing of individual channels is unnecessary.
    Type: Grant
    Filed: October 5, 2010
    Date of Patent: September 9, 2014
    Assignee: Infinera Corporation
    Inventors: Kuang-Tsan Wu, John D. McNicol, David F. Welch, Stephen G. Grubb, Pierre Mertz
  • Patent number: 8774646
    Abstract: Consistent with the present disclosure, a coherent detector is provided that includes an optical hybrid that supplies optical signals including local oscillator light to a balanced detector. The amount of imbalance or “balance error” in the balanced detector is identified by comparing an output of the balanced detector and an output of a photodiode that receives a portion of an input optical signal provided to the optical hybrid. Based on the balance error, electrical signals generated by the balanced detector or the power of optical signals passing through (or output from) the optical hybrid circuit can be adjusted so that the balance error is minimized or reduced to zero. As a result, imbalance associated with the balanced detector is corrected so that unwanted currents and/or related electrical signals are cancelled out or substantially cancelled out.
    Type: Grant
    Filed: April 1, 2011
    Date of Patent: July 8, 2014
    Inventor: John D. McNicol
  • Patent number: 8768177
    Abstract: Consistent with the present disclosure, data, in digital form, is received by a transmit nodes of an optical communication, and converted to analog signal by a digital-to-analog converter (DAC) to drive a modulator. The modulator, in turn, modulates light at one of a plurality of wavelengths in accordance with the received data. The modulated light is then transmitted over an optical communication path to a receive node. At the receive node, the modulated optical signal, as well as other modulated optical signals are supplied to a photodetector circuit, which receives additional light at one of the optical signal wavelengths from a local oscillator laser. An analog-to-digital converter (ADC) is provided in the receive node to convert the electrical signals output from the photodetector into digital form. The output from the ADC is then filtered in the electrical domain, such that optical demultiplexing of individual channels is unnecessary.
    Type: Grant
    Filed: October 5, 2010
    Date of Patent: July 1, 2014
    Assignee: Infinera Corporation
    Inventors: Kuang-Tsan Wu, John D. McNicol, David F. Welch, Stephen G. Grubb, Pierre Mertz
  • Patent number: 8655190
    Abstract: Consistent with the present disclosure, data, in digital form, is received by a transmit nodes of an optical communication, and converted to analog signal by a digital-to-analog converter (DAC) to drive a modulator. The modulator, in turn, modulates light at one of a plurality of wavelengths in accordance with the received data. The modulated light is then transmitted over an optical communication path to a receive node. At the receive node, the modulated optical signal, as well as other modulated optical signals are supplied to a photodetector circuit, which receives additional light at one of the optical signal wavelengths from a local oscillator laser. An analog-to-digital converter (ADC) is provided in the receive node to convert the electrical signals output from the photodetector into digital form. The output from the ADC is then filtered in the electrical domain, such that optical demultiplexing of individual channels is unnecessary.
    Type: Grant
    Filed: October 5, 2010
    Date of Patent: February 18, 2014
    Assignee: Infinera Corporation
    Inventors: Kuang-Tsan Wu, John D. McNicol, David F. Welch, Stephen G. Grubb, Pierre Mertz
  • Patent number: 8639118
    Abstract: Consistent with the present disclosure, data, in digital form, is received by a transmit nodes of an optical communication, and converted to analog signal by a digital-to-analog converter (DAC) to drive a modulator. The modulator, in turn, modulates light at one of a plurality of wavelengths in accordance with the received data. The modulated light is then transmitted over an optical communication path to a receive node. At the receive node, the modulated optical signal, as well as other modulated optical signals are supplied to a photodetector circuit, which receives additional light at one of the optical signal wavelengths from a local oscillator laser. An analog-to-digital converter (ADC) is provided in the receive node to convert the electrical signals output from the photodetector into digital form. The output from the ADC is then filtered in the electrical domain, such that optical demultiplexing of individual channels is unnecessary.
    Type: Grant
    Filed: October 5, 2010
    Date of Patent: January 28, 2014
    Assignee: Infinera Corporation
    Inventors: Kuang-Tsan Wu, John D. McNicol, David F. Welch, Stephen G. Grubb, Pierre Mertz
  • Patent number: 8477056
    Abstract: A system, method, and apparatus is disclosed for interpolation of an output of an analog to digital converter (ADC) to enable operation of the ADC at a sampling rate that is independent of the sampling rate for a DSP core so as to efficiently enable operation at higher date rates. According to one of the embodiments, an interpolation circuit is coupled between the ADC and DSP core and receives a first plurality of samples of data at the first data rate from the ADC and supplies a plurality of samples of second data at a second data rate to the DSP core; the second data rate being less than the first data rate. According to one of the embodiments, the interpolation circuit includes a memory and a FIR filter circuit having filter tap coefficient values selected to provide attenuation at high frequencies to reduce aliasing noise.
    Type: Grant
    Filed: June 1, 2010
    Date of Patent: July 2, 2013
    Assignee: Infinera Corporation
    Inventors: Han Henry Sun, Kuang-Tsan Wu, Yuejian Wu, Sandy Thomson, John D. McNicol, David J. Krause
  • Patent number: 8335440
    Abstract: A system, method, and apparatus is disclosed for enabling a constant modulus algorithm (CMA) to be reliably used for blind equalization training of an equalizer. According to one embodiment, received signals in a binary phase shift keying (BPSK) format are converted to a quadrature phase shift keying (QPSK) format, to which CMA processing can be reliably applied for equalization. According to another aspect of this embodiment, the equalized QPSK signals are rotated to convert the signals to an equalized BPSK format for output.
    Type: Grant
    Filed: June 1, 2010
    Date of Patent: December 18, 2012
    Assignee: Infinera Corporation
    Inventors: David J. Krause, Han Henry Sun, John D. McNicol
  • Publication number: 20120251118
    Abstract: Consistent with the present disclosure, a coherent detector is provided that includes an optical hybrid that supplies optical signals including local oscillator light to a balanced detector. The amount of imbalance or “balance error” in the balanced detector is identified by comparing an output of the balanced detector and an output of a photodiode that receives a portion of an input optical signal provided to the optical hybrid. Based on the balance error, electrical signals generated by the balanced detector or the power of optical signals passing through (or output from) the optical hybrid circuit can be adjusted so that the balance error is minimized or reduced to zero. As a result, imbalance associated with the balanced detector is corrected so that unwanted currents and/or related electrical signals are cancelled out or substantially cancelled out.
    Type: Application
    Filed: April 1, 2011
    Publication date: October 4, 2012
    Inventor: John D. McNicol
  • Publication number: 20120251121
    Abstract: Consistent with the present disclosure, data, in digital form, is received by a transmit node of an optical communication system, is processed and then output to drive a modulator. The modulator, in turn, modulates light at one of a plurality of wavelengths in accordance with the received data, forming a plurality of corresponding carriers. The plurality of wavelengths used for the plurality of carriers are spectrally spaced apart by a common, periodic fixed spacing. The plurality of carriers are optically combined with a fixed spacing combiner to form a superchannel. A plurality of superchannels are generated and then multiplexed together onto an optical communication path and transmitted to a receive node. Each superchannel includes a plurality of carriers, each spectrally separated by the same fixed spacing. The plurality of superchannels are spectrally separated by an amount corresponding to the fixed spacing of the plurality of carriers.
    Type: Application
    Filed: April 1, 2011
    Publication date: October 4, 2012
    Inventors: John D. McNicol, Michael Francis Van Leeuwen
  • Publication number: 20120251120
    Abstract: Consistent with the present disclosure, data, in digital form, is received by a transmit node of an optical communication system, and converted to an analog signal by a digital-to-analog converter (DAC) to drive a modulator. The modulator, in turn, modulates light at one of a plurality of wavelengths in accordance with the received data forming a plurality of corresponding carriers. The carriers are modulated according to one of a plurality of modulation formats and then optically combined to form a superchannel of a constant maximum capacity, for example. Accordingly, the number of carriers and the bit rate for each carrier remain constant for each modulation format to realize a constant maximum capacity. The superchannel is then transmitted over an optical communication path to a receive node. At the receive node, the superchannel is optically demultiplexed from a plurality of other superchannels.
    Type: Application
    Filed: April 1, 2011
    Publication date: October 4, 2012
    Inventors: John D. McNicol, Kuang-Tsan Wu, Han Henry Sun