Patents by Inventor John D. Norton

John D. Norton has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220135311
    Abstract: An apparatus having a foil pack defining a device enclosure and a fluid conduit defining a fluid channel. The device enclosure may be configured to hold an energy storage device such as a battery or capacitor. The fluid conduit defines a fluid channel configured to allow a flow from the device enclosure through a test port defined by the fluid conduit. The apparatus is configured to establish a vacuum in the device enclosure when a vacuum is established in the fluid channel (e.g., during leak testing of the device enclosure). A scaffolding within the fluid conduit is configured to configured to resist a collapse of the fluid channel when the vacuum is established in the fluid channel.
    Type: Application
    Filed: November 1, 2021
    Publication date: May 5, 2022
    Inventors: Christian S. Nielsen, Timothy T. Bomstad, Lance B. Lohstreter, John D. Norton, Mark E. Viste, Paul B. Young
  • Patent number: 11110290
    Abstract: An implantable active medical device system includes an active medical device and a lead extending between a proximal portion electrically coupled to the active medical device and a distal end portion configured to emit light. The distal end portion includes a solid state light source disposed within a light transmissive ring element. The light transmissive ring element forms an exterior segment of the distal end portion. The light transmissive ring element defines at least a portion of a hermetic cavity.
    Type: Grant
    Filed: March 4, 2019
    Date of Patent: September 7, 2021
    Assignee: Medtronic, Inc.
    Inventors: Brad C. Tischendorf, Gordon O. Munns, Christian S. Nielsen, John D. Norton, Markus W. Reiterer, Andrew J. Thom, Kunal J. Paralikar
  • Patent number: 11056267
    Abstract: Systems, devices and methods allow inductive recharging of a power source located within or coupled to an implantable medical device while the device is implanted in a patient. The implantable medical device in some examples include a receive antenna configuration that may include at least one infinity shaped receive coil. One or more of the receive coils may be affixed to a ferrite sheet formed having a curved shape that conforms to a curvature on an inner surface of a portion of a housing of the implantable medical device so that the ferrite sheet and the receive coil or coils may be positioned adjacent to some portion of the curved inner surface with the ferrite sheet positioned between the inner surface and the receive coil or coils.
    Type: Grant
    Filed: June 28, 2018
    Date of Patent: July 6, 2021
    Assignee: MEDTRONIC, INC.
    Inventors: Rajesh V. Iyer, Gordon O. Munns, John D. Norton, Craig L. Schmidt, Paul B. Young
  • Patent number: 11045658
    Abstract: Systems, devices and methods allow inductive recharging of a power source located within or coupled to an implantable medical device while the device is implanted in a patient. The implantable medical device in some examples include a receive antenna configuration that may include at least one infinity shaped receive coil. One or more of the receive coils may be formed having a curved shape that conforms to a curvature on an inner surface of a portion of a housing of the implantable medical device so that the receive coil or coils may be positioned adjacent to, and in some examples in direct contact with, some portion of the curved inner surface.
    Type: Grant
    Filed: June 28, 2018
    Date of Patent: June 29, 2021
    Assignee: MEDTRONIC, INC.
    Inventors: Rajesh V. Iyer, Gordon O. Munns, John D. Norton, Craig L. Schmidt, Paul B. Young
  • Publication number: 20200005988
    Abstract: Systems, devices and methods allow inductive recharging of a power source located within or coupled to an implantable medical device while the device is implanted in a patient. The implantable medical device in some examples include a receive antenna configuration that may include at least one infinity shaped receive coil. One or more of the receive coils may be affixed to a ferrite sheet formed having a curved shape that conforms to a curvature on an inner surface of a portion of a housing of the implantable medical device so that the ferrite sheet and the receive coil or coils may be positioned adjacent to some portion of the curved inner surface with the ferrite sheet positioned between the inner surface and the receive coil or coils.
    Type: Application
    Filed: June 28, 2018
    Publication date: January 2, 2020
    Inventors: Rajesh V. Iyer, Gordon O. Munns, John D. Norton, Craig L. Schmidt, Paul B. Young
  • Publication number: 20200001095
    Abstract: Systems, devices and methods allow inductive recharging of a power source located within or coupled to an implantable medical device while the device is implanted in a patient. The implantable medical device in some examples include a receive antenna configuration that may include at least one infinity shaped receive coil. One or more of the receive coils may be formed having a curved shape that conforms to a curvature on an inner surface of a portion of a housing of the implantable medical device so that the receive coil or coils may be positioned adjacent to, and in some examples in direct contact with, some portion of the curved inner surface.
    Type: Application
    Filed: June 28, 2018
    Publication date: January 2, 2020
    Inventors: Rajesh V. Iyer, Gordon O. Munns, John D. Norton, Craig L. Schmidt, Paul B. Young
  • Publication number: 20190350647
    Abstract: A medical device may include an electrosurgical hand piece. The electrosurgical hand piece may have a housing with a proximal end, a distal end, and a chamber proximate the proximal end. The chamber may be configured to releasably retain and electrically couple with a power source. The electrosurgical hand piece may also include a treatment delivery element configured to releasably couple to the distal end of the housing. The treatment delivery element may be configured to communicate with the power source and deliver biphasic pulsed field ablation. The medical device may also include a charging element which may charge the power source using inductive charging or near-field (RF) wireless charging.
    Type: Application
    Filed: March 21, 2019
    Publication date: November 21, 2019
    Inventors: Steven V. Ramberg, Daniel S. Cheek, Steven J. Fraasch, Brian Howard, John D. Norton
  • Patent number: 10413747
    Abstract: An implantable active medical device includes a housing defining a hermetic cavity, a lead connector receptacle extending into the implantable active medical device, and a solid state light source disposed within the hermetic cavity and optically coupled to the lead connector receptacle.
    Type: Grant
    Filed: April 23, 2015
    Date of Patent: September 17, 2019
    Assignee: Medtronic, Inc.
    Inventors: Christian S. Nielsen, Kunal J. Paralikar, Brad C. Tischendorf, John D. Norton, Markus W. Reiterer, Andrew J. Thom, Gordon O. Munns
  • Publication number: 20190201709
    Abstract: An implantable active medical device system includes an active medical device and a lead extending between a proximal portion electrically coupled to the active medical device and a distal end portion configured to emit light. The distal end portion includes a solid state light source disposed within a light transmissive ring element. The light transmissive ring element forms an exterior segment of the distal end portion. The light transmissive ring element defines at least a portion of a hermetic cavity.
    Type: Application
    Filed: March 4, 2019
    Publication date: July 4, 2019
    Inventors: Brad C. Tischendorf, Gordon O. Munns, Christian S. Nielsen, John D. Norton, Markus W. Reiterer, Andrew J. Thom, Kunal J. Paralikar
  • Patent number: 10245441
    Abstract: An implantable active medical device system includes an active medical device and a lead extending between a proximal portion electrically coupled to the active medical device and a distal end portion configured to emit light. The distal end portion includes a solid state light source disposed within a light transmissive ring element. The light transmissive ring element forms an exterior segment of the distal end portion. The light transmissive ring element defines at least a portion of a hermetic cavity.
    Type: Grant
    Filed: April 23, 2015
    Date of Patent: April 2, 2019
    Assignee: MEDTRONIC, INC.
    Inventors: Brad C. Tischendorf, Gordon O. Munns, Christian S. Nielsen, John D. Norton, Markus W. Reiterer, Andrew J. Thom, Kunal J. Paralikar
  • Patent number: 10124179
    Abstract: Implantable medical devices, implantable medical device systems that include such implantable medical devices, and implantable medical device batteries, as well as methods of making. Such devices can include a battery of relatively small volume but of relatively high power (reported as therapeutic power) and relatively high capacity (reported as capacity density).
    Type: Grant
    Filed: October 18, 2016
    Date of Patent: November 13, 2018
    Assignee: MEDTRONIC, INC.
    Inventors: John D. Norton, Craig L. Schmidt, Kevin Wilmot Eberman, Lawrence Robert Heyn
  • Patent number: 9960432
    Abstract: An inert material is included in the electrode assembling of a battery having a thickness which compensates for a difference in dimension of the electrode assembly when thinner electrodes are used to construct a battery having reduced capacity, to thereby be accommodated in a battery case of uniform dimension regardless of the electrical characteristics of the battery.
    Type: Grant
    Filed: March 26, 2015
    Date of Patent: May 1, 2018
    Assignee: Medtronic, Inc.
    Inventors: John D. Norton, Craig L. Schmidt
  • Patent number: 9861828
    Abstract: An implantable medical device includes a low-power circuit and a multi-cell power source. The cells of the power source are coupled in a parallel configuration. The implantable medical device includes both a low power circuit and a high power circuit that are coupled between the first and second cells. An isolation circuit is coupled to the first cell and the second cell in a safe parallel orientation and the first and second cells are configured in a first configuration to deliver energy to the low power circuit segment and in a second configuration that is different from the first configuration to deliver energy to the high power circuit segment. A monitoring circuit is coupled to the power source and operable to evaluate the first cell and the second cell to detect a fault condition associated with at least one of the first and second cells.
    Type: Grant
    Filed: April 24, 2015
    Date of Patent: January 9, 2018
    Assignee: Medtronic, Inc.
    Inventors: John D Norton, Craig L Schmidt
  • Patent number: 9861827
    Abstract: An implantable medical device includes a low-power circuit and a multi-cell power source. The cells of the power source are coupled in a parallel configuration. The implantable medical device includes both a low power circuit that is selectively coupled between the first and second cells and a high power output circuit that is directly coupled to the first and second cells in a parallel configuration. An isolation circuit is coupled to the first cell, the second cell and the low power circuit to maintain a current isolation between the first cell and the second cell at least during delivery of current having a large magnitude to the high power output circuit.
    Type: Grant
    Filed: April 24, 2015
    Date of Patent: January 9, 2018
    Assignee: Medtronic, Inc.
    Inventors: Lonny V Cabelka, Mark R Boone, Randolph E Crutchfield, Kevin P Kuehn, John T Meador, John D Norton, Craig L Schmidt
  • Patent number: 9750950
    Abstract: Implantable medical device systems of the present disclosure may include a subcutaneous implantable cardioverter defibrillator (SICD) that is powered by a multi-cell power source that is connected to a transformer and power conversion circuitry to charge one or more relatively small, but powerful, high voltage capacitors to provide a relatively high discharge voltage. The SICD includes electrical isolation for the multi-cell power source to protect against cross-charging between the cells during the operational lifetime of the SICD.
    Type: Grant
    Filed: September 3, 2015
    Date of Patent: September 5, 2017
    Assignee: Medtronic, Inc.
    Inventors: John D Norton, Andrew J Ries, Randolph E Crutchfield
  • Patent number: 9604071
    Abstract: An implantable medical device includes a low-power circuit and a multi-cell power source. The cells of the power source are coupled in a parallel configuration. The implantable medical device includes both a low power circuit that is selectively coupled between the first and second cells and a high power output circuit that is directly coupled to the first and second cells in a parallel configuration. An isolation circuit is coupled to the first cell, the second cell and the low power circuit to maintain a current isolation between the first cell and the second cell at least during delivery currents having a large magnitude that are delivered to the high power output circuit.
    Type: Grant
    Filed: April 24, 2015
    Date of Patent: March 28, 2017
    Assignee: Medtronic, Inc.
    Inventors: Randolph E Crutchfield, Mark R Boone, Lonny V Cabelka, Kevin P Kuehn, John T Meador, John D Norton, Craig L Schmidt
  • Publication number: 20170036031
    Abstract: Implantable medical devices, implantable medical device systems that include such implantable medical devices, and implantable medical device batteries, as well as methods of making. Such devices can include a battery of relatively small volume but of relatively high power (reported as therapeutic power) and relatively high capacity (reported as capacity density).
    Type: Application
    Filed: October 18, 2016
    Publication date: February 9, 2017
    Inventors: John D. Norton, Craig L. Schmidt, Kevin Wilmot Eberman, Lawrence Robert Heyn
  • Patent number: 9559353
    Abstract: Implantable medical devices, implantable medical device systems that include such implantable medical devices, and implantable medical device batteries, as well as methods of making. Such devices can include a battery of relatively small volume but of relatively high power (reported as therapeutic power) and relatively high capacity (reported as capacity density).
    Type: Grant
    Filed: May 4, 2015
    Date of Patent: January 31, 2017
    Assignee: Medtronic, Inc.
    Inventors: John D. Norton, Craig L. Schmidt, Kevin Wilmot Eberman, Lawrence Robert Heyn
  • Patent number: 9548166
    Abstract: A capacitor for an implantable medical device is presented. The capacitor includes an anode, a cathode, a separator therebetween, and an electrolyte over the anode, cathode, and separator. The electrolyte includes ingredients comprising acetic acid, ammonium acetate, phosphoric acid, and tetraethylene glycol dimethyl ether. The capacitor has an operating voltage ninety percent or greater of its formation voltage.
    Type: Grant
    Filed: June 18, 2015
    Date of Patent: January 17, 2017
    Assignee: Medtronic, Inc.
    Inventors: Mark E. Viste, John D. Norton, Joachim Hossick-Schott, Anthony W. Rorvick
  • Publication number: 20160285111
    Abstract: An inert material is included in the electrode assembling of a battery having a thickness which compensates for a difference in dimension of the electrode assembly when thinner electrodes are used to construct a battery having reduced capacity, to thereby be accommodated in a battery case of uniform dimension regardless of the electrical characteristics of the battery.
    Type: Application
    Filed: March 26, 2015
    Publication date: September 29, 2016
    Inventors: John D. NORTON, Craig L. SCHMIDT