Patents by Inventor John D. Stelter

John D. Stelter has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220266180
    Abstract: A single-layer spunbonded air-filtration web including meltspun autogenously bonded electret fibers with an Actual Fiber Diameter of from 3.0 microns to 15 microns. The air-filtration web exhibits a ratio of mean flow pore size to pore size range of from 0.55 to 2.5. Also disclosed are methods of making such webs, and methods of using such webs to perform air filtration.
    Type: Application
    Filed: August 12, 2020
    Publication date: August 25, 2022
    Inventors: John D. Stelter, Zachary J. Becker, Michael R. Berrigan, Alexander P. Flage, Andrew R. Fox, Bryan L. Gerhardt, Himanshu Jasuja, William J. Kopecky, Patrick J. Sager, Samatha D Smith, Jacob J. Thelen, Kent B. Willgohs
  • Publication number: 20220266181
    Abstract: A single-layer spunbonded air-filtration web including meltspun autogenously bonded electret fibers with an Actual Fiber Diameter of from 3.0 microns to 9.0 microns. The air-filtration web exhibits a mean flow pore size of from 8.0 to 19 microns and exhibits a ratio of mean flow pore size to pore size range of from 0.55 to 2.5. Also disclosed are methods of making such webs, and methods of using such webs to perform air filtration.
    Type: Application
    Filed: August 12, 2020
    Publication date: August 25, 2022
    Inventors: Himanshu Jasuja, Kent B. Willgohs, Jacob J. Thelen, John D. Stelter, Samatha D. Smith, Patrick J. Sager, William J. Kopecky, Bryan L Gerhardt, Andrew R. Fox, Alexander P. Flage, Michael R. Berrigan, Zachary J. Becker
  • Publication number: 20220096977
    Abstract: The present disclosure relates to multi-layer composite articles including at least two nonwoven web layers. Each or the layers may be a spunbonded web, and each may include biodegradable materials. The multi-layered composites of the present disclosure are particularly well suited for air filtration, as they can combine a high dust holding capacity with sufficient strength, dimensional stability, and a relatively low pressure drop.
    Type: Application
    Filed: January 17, 2020
    Publication date: March 31, 2022
    Inventors: Zhiqun Zhang, Michael R. Berrigan, Ignatius A. Kadoma, Bryan L. Gerhardt, Liming Song, John D. Stelter, Zackary J. Becker
  • Publication number: 20200208314
    Abstract: Nonwoven webs including one or more semi-continuous filaments made of a mixture including from about 50% w/w to about 99% w/w of at least one crystalline polyolefin (co)polymer, and from about 1% w/w to about 40% w/w of at least one hydrocarbon tackifier resin. The at least one semi-continuous filament exhibits molecular orientation, and at least one of the crystalline polyolefin (co)polymer or the nonwoven web exhibits a Heat of Fusion measured using Differential Scanning Calorimetry of greater than 50 Joules/g. A process for making the semi-continuous filaments and nonwoven webs is also disclosed.
    Type: Application
    Filed: July 30, 2018
    Publication date: July 2, 2020
    Inventors: Eugene G. Joseph, Saurabh Batra, Michael R. Berrigan, John D. Stelter, Jacob J. Thelen, Zackary J. Becker, Liyun Ren, Sachin Talwar, Michael D. Romano
  • Patent number: 10575571
    Abstract: A flat-fold respirator is made from a stiff filtration panel joined to the remainder of the respirator through at least one line of demarcation. The panel contains a porous monocomponent monolayer nonwoven web that contains charged intermingled continuous monocomponent polymeric fibers of the same polymeric composition and that has sufficient basis weight or inter-fiber bonding so that the web exhibits a Gurley Stiffness greater than 200 mg and the respirator exhibits less than 20 mm H2O pressure drop. The respirator may be formed without requiring additional stiffening layers, bicomponent fibers, or other reinforcement and can be flat-folded for storage. Scrap from the manufacturing process may be recycled to make additional stiff filtration panel web.
    Type: Grant
    Filed: August 22, 2017
    Date of Patent: March 3, 2020
    Assignee: 3M Innovative Properties Company
    Inventors: Seyed A. Angadjivand, James E. Springett, John M. Brandner, Marvin E. Jones, Andrew R. Fox, Michael R. Berrigan, John D. Stelter
  • Publication number: 20190360135
    Abstract: A web of nonwoven fabric suitable for, e.g., the loop portion of a hook-and-loop fastening system. The method for making this material relies on differential shrinkage of different layers to cause the loops to self-form. The method is robust and simpler than that previously used for similar constructions.
    Type: Application
    Filed: February 9, 2018
    Publication date: November 28, 2019
    Inventors: Michael R. Berrigan, Zackary J. Becker, Daniel E. Johnson, Jimmy M. Le, John D. Stelter, Shou-Lu G. Wang, Robert C. Etter
  • Patent number: 10273612
    Abstract: Spunbonded electret webs comprising polylactic acid fibers, in which at least some of the polylactic acid fibers are meltspun, drawn, charged fibers that include charging additive; and, methods of making such fibers and webs.
    Type: Grant
    Filed: August 25, 2015
    Date of Patent: April 30, 2019
    Assignee: 3M Innovative Properties Company
    Inventors: Liming Song, Sachin Talwar, John D. Stelter, John M. Sebastian, Nathan E. Schultz, Eric M. Moore, Fuming B. Li, Andrew R. Fox, Michael R. Berrigan, Zackary J. Becker
  • Publication number: 20170347724
    Abstract: A flat-fold respirator is made from a stiff filtration panel joined to the remainder of the respirator through at least one line of demarcation. The panel contains a porous monocomponent monolayer nonwoven web that contains charged intermingled continuous monocomponent polymeric fibers of the same polymeric composition and that has sufficient basis weight or inter-fiber bonding so that the web exhibits a Gurley Stiffness greater than 200 mg and the respirator exhibits less than 20 mm H2O pressure drop. The respirator may be formed without requiring additional stiffening layers, bicomponent fibers, or other reinforcement and can be flat-folded for storage. Scrap from the manufacturing process may be recycled to make additional stiff filtration panel web.
    Type: Application
    Filed: August 22, 2017
    Publication date: December 7, 2017
    Inventors: Seyed A. Angadjivand, James E. Springett, John M. Brandner, Marvin E. Jones, Andrew R. Fox, Michael R. Berrigan, John D. Stelter
  • Patent number: 9770058
    Abstract: A flat-fold respirator is made from a stiff filtration panel joined to the remainder of the respirator through at least one line of demarcation. The panel contains a porous monocomponent monolayer nonwoven web that contains charged intermingled continuous monocomponent polymeric fibers of the same polymeric composition and that has sufficient basis weight or inter-fiber bonding so that the web exhibits a Gurley Stiffness greater than 200 mg and the respirator exhibits less than 20 mm H2O pressure drop. The respirator may be formed without requiring additional stiffening layers, bicomponent fibers, or other reinforcement and can be flat-folded for storage. Scrap from the manufacturing process may be recycled to make additional stiff filtration panel web.
    Type: Grant
    Filed: March 29, 2007
    Date of Patent: September 26, 2017
    Assignee: 3M Innovative Properties Company
    Inventors: Seyed A. Angadjivand, James E. Springett, John M. Brandner, Marvin E. Jones, Andrew R. Fox, Michael R. Berrigan, John D. Stelter
  • Publication number: 20170241054
    Abstract: Spunbonded electret webs comprising polylactic acid fibers, in which at least some of the polylactic acid fibers are meltspun, drawn, charged fibers that include charging additive; and, methods of making such fibers and webs.
    Type: Application
    Filed: August 25, 2015
    Publication date: August 24, 2017
    Inventors: Liming Song, Sachin Talwar, John D. Stelter, John M. Sebastian, Nathan E. Schultz, Eric M. Moore, Fuming B. Li, Andrew R. Fox, Michael R. Berrigan, Zackary J. Becker
  • Patent number: 9611572
    Abstract: Dimensionally stable nonwoven fibrous webs include a plurality of fibers formed from one or more thermoplastic polyesters and an antishrink additive, preferably in an amount greater than 0% and no more than 10% by weight of the web. The webs have at least one dimension which decreases by no greater than 12% in the plane of the web when heated to a temperature above a glass transition temperature of the fibers. The webs may be used as wipes.
    Type: Grant
    Filed: October 14, 2011
    Date of Patent: April 4, 2017
    Assignee: 3M Innovative Properties Company
    Inventors: Eric M. Moore, John D. Stelter, Michael R. Berrigan, Francis E. Porbeni, Matthew T. Scholz, Korey W. Karls, Sian F. Fennessey, Scott J. Tuman, Cordell M. Hardy, Yifan Zhang
  • Publication number: 20170058442
    Abstract: Dimensionally stable nonwoven fibrous webs include a multiplicity of continuous fibers formed from one or more thermoplastic polyesters and polypropylene in an amount greater than 0% and no more than 10% by weight of the web. The webs have at least one dimension which decreases by no greater than 10% in the plane of the web when heated to a temperature above a glass transition temperature of the fibers. When the thermoplastic polyester is selected to include aliphatic and aromatic polyesters, a spunbond process may be used to produce substantially continuous fibers that exhibit molecular orientation. When the thermoplastic polyester is selected from aliphatic polyesters, a meltblown process may be used to produce discontinuous fibers that do not exhibit molecular orientation. The webs may be used as articles for filtration, sound absorption, thermal insulation, surface cleaning, cellular growth support, drug delivery, personal hygiene, medical apparel, or wound dressing.
    Type: Application
    Filed: November 7, 2016
    Publication date: March 2, 2017
    Inventors: Eric M. Moore, John D. Stelter, Michael R. Berrigan, Francis E. Porbeni, Matthew T. Scholz, Kevin D. Landgrebe, Sian F. Fennessey, Jay M. Jennen, Korey W. Karls
  • Patent number: 9487893
    Abstract: Dimensionally stable nonwoven fibrous webs include a multiplicity of continuous fibers formed from one or more thermoplastic polyesters and polypropylene in an amount greater than 0% and no more than 10% by weight of the web. The webs have at least one dimension which decreases by no greater than 10% in the plane of the web when heated to a temperature above a glass transition temperature of the fibers. When the thermoplastic polyester is selected to include aliphatic and aromatic polyesters, a spunbond process may be used to produce substantially continuous fibers that exhibit molecular orientation. When the thermoplastic polyester is selected from aliphatic polyesters, a meltblown process may be used to produce discontinuous fibers that do not exhibit molecular orientation. The webs may be used as articles for filtration, sound absorption, thermal insulation, surface cleaning, cellular growth support, drug delivery, personal hygiene, medical apparel, or wound dressing.
    Type: Grant
    Filed: March 23, 2010
    Date of Patent: November 8, 2016
    Assignee: 3M Innovative Properties Company
    Inventors: Eric M Moore, John D. Stelter, Michael R. Berrigan, Francis E. Porbeni, Matthew T. Scholz, Kevin D. Landgrebe, Sian F. Fennessey, Jay M. Jennen, Korey W. Karls
  • Patent number: 9416485
    Abstract: Dimensionally stable nonwoven fibrous webs include a multiplicity of continuous fibers formed from one or more thermoplastic polyesters and polypropylene in an amount greater than 0% and no more than 10% by weight of the web. The webs have at least one dimension which decreases by no greater than 10% in the plane of the web when heated to a temperature above a glass transition temperature of the fibers. A spunbond process may be used to produce substantially continuous fibers that exhibit molecular orientation. A meltblown process may be used to produce discontinuous fibers that do not exhibit molecular orientation. In some embodiments, the fibers comprise a viscosity modifier and/or an anionic surfactant. The webs may be used as articles for filtration, sound absorption, thermal insulation, surface cleaning, cellular growth support, drug delivery, personal hygiene, medical apparel, or wound dressing.
    Type: Grant
    Filed: March 31, 2014
    Date of Patent: August 16, 2016
    Assignee: 3M Innovative Properties Company
    Inventors: Eric M. Moore, John D. Stelter, Michael R. Berrigan, Francis E. Porbeni, Matthew T. Scholz, Kevin D. Landgrebe, Korey W. Karls, Sian F. Fennessey, Jay M. Jennen
  • Publication number: 20160206984
    Abstract: High loft nonwoven webs including a population of substantially continuous mono-component melt-spun filaments, wherein the nonwoven web exhibits a Solidity of less than eight percent with a weight normalized cross direction (CD) tensile greater than 10 Newtons per 100 grams per square meter of web weight (10 N/100 gsm), and wherein the nonwoven web is substantially free of gap-formed fibers, crimped fibers, staple fibers, and bi-component fibers. High loft spun-bond nonwoven webs can be advantageously used in filtration articles. Methods of making high loft spun-bond nonwoven webs, and filtration articles including high loft spun-bond webs made according to the methods, are also disclosed.
    Type: Application
    Filed: September 2, 2014
    Publication date: July 21, 2016
    Inventors: Michael R. Berrigan, Zackary J. Becker, John D. Stelter, Francis E. Porbeni, Liming Song, Andrew R. Fox
  • Patent number: 9194065
    Abstract: Dimensionally stable nonwoven fibrous webs include a multiplicity of continuous fibers formed from one or more thermoplastic polyesters and polypropylene in an amount greater than 0% and no more than 10% by weight of the web. The webs have at least one dimension which decreases by no greater than 10% in the plane of the web when heated to a temperature above a glass transition temperature of the fibers. A spunbond process may be used to produce substantially continuous fibers that exhibit molecular orientation. A meltblown process may be used to produce discontinuous fibers that do not exhibit molecular orientation. The webs may be used as articles for filtration, sound absorption, thermal insulation, surface cleaning, cellular growth support, drug delivery, personal hygiene, medical apparel, or wound dressing.
    Type: Grant
    Filed: December 17, 2010
    Date of Patent: November 24, 2015
    Assignee: 3M Innovative Properties Company
    Inventors: Eric M. Moore, John D. Stelter, Michael R. Berrigan, Francis E. Porbeni, Matthew T. Scholz, Sian F. Fennessey, Jay M. Jennen, Kevin D. Landgrebe, Korey W. Karis
  • Patent number: 9139940
    Abstract: A method for making a bonded nonwoven fibrous web comprising 1) providing a nonwoven fibrous web that comprises oriented semicrystalline polymeric fibers, and 2) subjecting the web to a controlled heating and quenching operation that includes a) forcefully passing through the web a fluid heated to at least the onset melting temperature of said polymeric material for a time too short to wholly melt the fibers, and b) immediately quenching the web by forcefully passing through the web a fluid at a temperature at least 50° C. less than the Nominal Melting Point of the material of the fibers. The fibers of the treated web generally have i) an amorphous-characterized phase that exhibits repeatable softening (making the fibers softenable) and ii) a crystallite-characterized phase that reinforces the fiber structure during softening of the amorphous-characterized phase, whereby the fibers may be autogenously bonded while retaining orientation and fiber structure.
    Type: Grant
    Filed: July 31, 2006
    Date of Patent: September 22, 2015
    Assignee: 3M Innovative Properties company
    Inventors: Michael R. Berrigan, John D. Stelter, Pamela A. Percha, Andrew R. Fox, William T. Fay
  • Patent number: 8802002
    Abstract: A method for making a bonded nonwoven fibrous web comprising extruding melt blown fibers of a polymeric material, collecting the melt blown fibers as an initial nonwoven fibrous web, annealing the initial nonwoven fibrous web with a controlled heating and cooling operation, and collecting the dimensionally stable bonded nonwoven fibrous web is described. The bonded nonwoven fibrous web shrinkage is typically less than 4 percent relative to the initial nonwoven fibrous web.
    Type: Grant
    Filed: December 28, 2006
    Date of Patent: August 12, 2014
    Assignee: 3M Innovative Properties Company
    Inventors: Michael R. Berrigan, John D. Stelter, Ruth A. Ebbens, Sian F. Fennessey
  • Publication number: 20140210141
    Abstract: Dimensionally stable nonwoven fibrous webs include a multiplicity of continuous fibers formed from one or more thermoplastic polyesters and polypropylene in an amount greater than 0% and no more than 10% by weight of the web. The webs have at least one dimension which decreases by no greater than 10% in the plane of the web when heated to a temperature above a glass transition temperature of the fibers. A spunbond process may be used to produce substantially continuous fibers that exhibit molecular orientation. A meltblown process may be used to produce discontinuous fibers that do not exhibit molecular orientation. In some embodiments, the fibers comprise a viscosity modifier and/or an anionic surfactant. The webs may be used as articles for filtration, sound absorption, thermal insulation, surface cleaning, cellular growth support, drug delivery, personal hygiene, medical apparel, or wound dressing.
    Type: Application
    Filed: March 31, 2014
    Publication date: July 31, 2014
    Applicant: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Eric M. Moore, John D. Stelter, Michael R. Berrigan, Francis E. Porbeni, Matthew T. Scholz, Kevin D. Landgrebe, Korey W. Karls, Sian F. Fennessey, Jay M. Jennen
  • Patent number: 8721943
    Abstract: Dimensionally stable nonwoven fibrous webs include a multiplicity of continuous fibers formed from one or more thermoplastic polyesters and polypropylene in an amount greater than 0% and no more than 10% by weight of the web. The webs have at least one dimension which decreases by no greater than 10% in the plane of the web when heated to a temperature above a glass transition temperature of the fibers. A spunbond process may be used to produce substantially continuous fibers that exhibit molecular orientation. A meltblown process may be used to produce discontinuous fibers that do not exhibit molecular orientation. In some embodiments, the fibers comprise a viscosity modifier and/or an anionic surfactant. The webs may be used as articles for filtration, sound absorption, thermal insulation, surface cleaning, cellular growth support, drug delivery, personal hygiene, medical apparel, or wound dressing.
    Type: Grant
    Filed: December 17, 2010
    Date of Patent: May 13, 2014
    Assignee: 3M Innovative Properties Company
    Inventors: Eric M. Moore, John D. Stelter, Michael R. Berrigan, Francis E. Porbeni, Matthew T. Scholz, Kevin D. Landgrebe, Korey W. Karls, Sian F. Fennessey, Jay M. Jennen