Patents by Inventor John D. Voss

John D. Voss has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11095009
    Abstract: In an example embodiment, a waveguide device comprises: a first common waveguide; a polarizer section, the polarizer section including a conductive septum dividing the first common waveguide into a first divided waveguide portion and a second waveguide divided portion; a second waveguide coupled to the first divided waveguide portion of the polarizer section; a third waveguide coupled to the second divided waveguide portion of the polarizer section; and a dielectric insert. The dielectric insert includes a first dielectric portion partially filling the polarizer section. The conductive septum and the dielectric portion convert a signal between a polarized state in the first common waveguide and a first polarization component in the second waveguide and a second polarization component in the third waveguide.
    Type: Grant
    Filed: May 8, 2020
    Date of Patent: August 17, 2021
    Assignee: VIASAT, INC.
    Inventors: Anders Jensen, John D. Voss, Donald L. Runyon
  • Publication number: 20200274216
    Abstract: In an example embodiment, a waveguide device comprises: a first common waveguide; a polarizer section, the polarizer section including a conductive septum dividing the first common waveguide into a first divided waveguide portion and a second waveguide divided portion; a second waveguide coupled to the first divided waveguide portion of the polarizer section; a third waveguide coupled to the second divided waveguide portion of the polarizer section; and a dielectric insert. The dielectric insert includes a first dielectric portion partially filling the polarizer section. The conductive septum and the dielectric portion convert a signal between a polarized state in the first common waveguide and a first polarization component in the second waveguide and a second polarization component in the third waveguide.
    Type: Application
    Filed: May 8, 2020
    Publication date: August 27, 2020
    Applicant: VIASAT, INC.
    Inventors: ANDERS JENSEN, JOHN D. VOSS, DONALD L. RUNYON
  • Patent number: 10686235
    Abstract: In an example embodiment, a waveguide device comprises: a first common waveguide; a polarizer section, the polarizer section including a conductive septum dividing the first common waveguide into a first divided waveguide portion and a second waveguide divided portion; a second waveguide coupled to the first divided waveguide portion of the polarizer section; a third waveguide coupled to the second divided waveguide portion of the polarizer section; and a dielectric insert. The dielectric insert includes a first dielectric portion partially filling the polarizer section. The conductive septum and the dielectric portion convert a signal between a polarized state in the first common waveguide and a first polarization component in the second waveguide and a second polarization component in the third waveguide.
    Type: Grant
    Filed: February 7, 2019
    Date of Patent: June 16, 2020
    Assignee: Viasat, Inc.
    Inventors: Anders Jensen, John D Voss, Donald L Runyon
  • Publication number: 20190190108
    Abstract: In an example embodiment, a waveguide device comprises: a first common waveguide; a polarizer section, the polarizer section including a conductive septum dividing the first common waveguide into a first divided waveguide portion and a second waveguide divided portion; a second waveguide coupled to the first divided waveguide portion of the polarizer section; a third waveguide coupled to the second divided waveguide portion of the polarizer section; and a dielectric insert. The dielectric insert includes a first dielectric portion partially filling the polarizer section. The conductive septum and the dielectric portion convert a signal between a polarized state in the first common waveguide and a first polarization component in the second waveguide and a second polarization component in the third waveguide.
    Type: Application
    Filed: February 7, 2019
    Publication date: June 20, 2019
    Applicant: VIASAT, INC.
    Inventors: ANDERS JENSEN, JOHN D. VOSS, DONALD L. RUNYON
  • Patent number: 10243245
    Abstract: In an example embodiment, a waveguide device comprises: a first common waveguide; a polarizer section, the polarizer section including a conductive septum dividing the first common waveguide into a first divided waveguide portion and a second waveguide divided portion; a second waveguide coupled to the first divided waveguide portion of the polarizer section; a third waveguide coupled to the second divided waveguide portion of the polarizer section; and a dielectric insert. The dielectric insert includes a first dielectric portion partially filling the polarizer section. The conductive septum and the dielectric portion convert a signal between a polarized state in the first common waveguide and a first polarization component in the second waveguide and a second polarization component in the third waveguide.
    Type: Grant
    Filed: September 6, 2018
    Date of Patent: March 26, 2019
    Assignee: VIASAT, INC.
    Inventors: Anders Jensen, John D Voss, Donald L Runyon
  • Publication number: 20190020087
    Abstract: In an example embodiment, a waveguide device comprises: a first common waveguide; a polarizer section, the polarizer section including a conductive septum dividing the first common waveguide into a first divided waveguide portion and a second waveguide divided portion; a second waveguide coupled to the first divided waveguide portion of the polarizer section; a third waveguide coupled to the second divided waveguide portion of the polarizer section; and a dielectric insert. The dielectric insert includes a first dielectric portion partially filling the polarizer section. The conductive septum and the dielectric portion convert a signal between a polarized state in the first common waveguide and a first polarization component in the second waveguide and a second polarization component in the third waveguide.
    Type: Application
    Filed: September 6, 2018
    Publication date: January 17, 2019
    Applicant: VIASAT, INC.
    Inventors: ANDERS JENSEN, JOHN D. VOSS, DONALD L. RUNYON
  • Patent number: 10096877
    Abstract: In an example embodiment, a waveguide device comprises: a first common waveguide; a polarizer section, the polarizer section including a conductive septum dividing the first common waveguide into a first divided waveguide portion and a second waveguide divided portion; a second waveguide coupled to the first divided waveguide portion of the polarizer section; a third waveguide coupled to the second divided waveguide portion of the polarizer section; and a dielectric insert. The dielectric insert includes a first dielectric portion partially filling the polarizer section. The conductive septum and the dielectric portion convert a signal between a polarized state in the first common waveguide and a first polarization component in the second waveguide and a second polarization component in the third waveguide.
    Type: Grant
    Filed: November 28, 2017
    Date of Patent: October 9, 2018
    Assignee: VIASAT, INC.
    Inventors: Anders Jensen, John D Voss, Donald L Runyon
  • Publication number: 20180123203
    Abstract: In an example embodiment, a waveguide device comprises: a first common waveguide; a polarizer section, the polarizer section including a conductive septum dividing the first common waveguide into a first divided waveguide portion and a second waveguide divided portion; a second waveguide coupled to the first divided waveguide portion of the polarizer section; a third waveguide coupled to the second divided waveguide portion of the polarizer section; and a dielectric insert. The dielectric insert includes a first dielectric portion partially filling the polarizer section. The conductive septum and the dielectric portion convert a signal between a polarized state in the first common waveguide and a first polarization component in the second waveguide and a second polarization component in the third waveguide.
    Type: Application
    Filed: November 28, 2017
    Publication date: May 3, 2018
    Applicant: VIASAT, INC.
    Inventors: ANDERS JENSEN, JOHN D VOSS, DONALD L RUNYON
  • Patent number: 9859597
    Abstract: In an example embodiment, a waveguide device comprises: a first common waveguide; a polarizer section, the polarizer section including a conductive septum dividing the first common waveguide into a first divided waveguide portion and a second waveguide divided portion; a second waveguide coupled to the first divided waveguide portion of the polarizer section; a third waveguide coupled to the second divided waveguide portion of the polarizer section; and a dielectric insert. The dielectric insert includes a first dielectric portion partially filling the polarizer section. The conductive septum and the dielectric portion convert a signal between a polarized state in the first common waveguide and a first polarization component in the second waveguide and a second polarization component in the third waveguide.
    Type: Grant
    Filed: April 7, 2017
    Date of Patent: January 2, 2018
    Assignee: VIASAT, INC.
    Inventors: Anders Jensen, John D Voss, Donald L Runyon, Sharad V Parekh, Dominic Q Nguyen
  • Publication number: 20170263991
    Abstract: In an example embodiment, a waveguide device comprises: a first common waveguide; a polarizer section, the polarizer section including a conductive septum dividing the first common waveguide into a first divided waveguide portion and a second waveguide divided portion; a second waveguide coupled to the first divided waveguide portion of the polarizer section; a third waveguide coupled to the second divided waveguide portion of the polarizer section; and a dielectric insert. The dielectric insert includes a first dielectric portion partially filling the polarizer section. The conductive septum and the dielectric portion convert a signal between a polarized state in the first common waveguide and a first polarization component in the second waveguide and a second polarization component in the third waveguide.
    Type: Application
    Filed: April 7, 2017
    Publication date: September 14, 2017
    Applicant: VIASAT, INC.
    Inventors: ANDERS JENSEN, JOHN D VOSS, DONALD L RUNYON, SHARAD V PAREKH, DOMINIC Q NGUYEN
  • Patent number: 9761937
    Abstract: A system, device, and method for a broad-band array antenna are presented. More particularly, the application relates to a broad-band fragmented aperture phased array antenna for the Ka, K, and/or Ku frequency bands. In various exemplary embodiments, the antenna system may support dynamic polarization degradation correction. In one exemplary embodiment a method and system for a broad-band fragmented aperture phased array antenna for the Ka, K, and/or Ku frequency band is presented. In one exemplary embodiment, the fragmented aperture design functions in one or more of the Ku-band, K-band, and/or Ka-band. In another exemplary embodiment, the antenna system may include full electronic polarization agility. In one exemplary embodiment, the antenna system may further comprise a printed circuit board radiating element. The printed circuit board radiating element may be configured to function as an antenna. In one exemplary embodiment, the antenna system may support operation over multiple frequency bands.
    Type: Grant
    Filed: May 24, 2016
    Date of Patent: September 12, 2017
    Assignee: VIASAT, INC.
    Inventors: Donald L Runyon, John D Voss
  • Patent number: 9666949
    Abstract: A partially dielectric loaded divided horn waveguide device for a dual-polarized antenna is described. The partially dielectric loaded divided horn waveguide device may include a polarizer, a waveguide horn, multiple individual waveguides dividing a horn port of the waveguide horn, and multiple dielectric elements partially filling the individual waveguides. The dielectric elements may include a dielectric member extending along a corresponding individual waveguide and one or more matching features for matching signal propagation between the partially dielectric loaded individual waveguides and free space. Various components of the partially dielectric loaded divided horn waveguide device may be tuned for enhanced signal propagation between the waveguide horn and the individual waveguides, and between the individual waveguides and free space.
    Type: Grant
    Filed: September 9, 2015
    Date of Patent: May 30, 2017
    Assignee: ViaSat, Inc.
    Inventors: Matthew J. Miller, Dominic Q. Nguyen, Donald L. Runyon, James W. Maxwell, John D. Voss
  • Publication number: 20170069972
    Abstract: A partially dielectric loaded divided horn waveguide device for a dual-polarized antenna is described. The partially dielectric loaded divided horn waveguide device may include a polarizer, a waveguide horn, multiple individual waveguides dividing a horn port of the waveguide horn, and multiple dielectric elements partially filling the individual waveguides. The dielectric elements may include a dielectric member extending along a corresponding individual waveguide and one or more matching features for matching signal propagation between the partially dielectric loaded individual waveguides and free space. Various components of the partially dielectric loaded divided horn waveguide device may be tuned for enhanced signal propagation between the waveguide horn and the individual waveguides, and between the individual waveguides and free space.
    Type: Application
    Filed: September 9, 2015
    Publication date: March 9, 2017
    Inventors: Matthew J. Miller, Dominic Q. Nguyen, Donald L. Runyon, James W. Maxwell, John D. Voss
  • Patent number: 9502747
    Abstract: In an example embodiment, an airborne radio frequency (RF) antenna device can comprise: a radiating portion; a waveguide portion connected to the radiating portion; a desiccant airflow channel; and an internal air volume located within the RF antenna device and associated with the desiccant airflow channel. The desiccant airflow channel can be integral with the RF antenna device. The internal air volume can be vented to the environment outside of the RF antenna device through the desiccant airflow channel.
    Type: Grant
    Filed: February 13, 2015
    Date of Patent: November 22, 2016
    Assignee: VIASAT, INC.
    Inventors: John D Voss, James W Maxwell, Jeremy D Standridge
  • Publication number: 20160276743
    Abstract: A system, device, and method for a broad-band array antenna are presented. More particularly, the application relates to a broad-band fragmented aperture phased array antenna for the Ka, K, and/or Ku frequency bands. In various exemplary embodiments, the antenna system may support dynamic polarization degradation correction. In one exemplary embodiment a method and system for a broad-band fragmented aperture phased array antenna for the Ka, K, and/or Ku frequency band is presented. In one exemplary embodiment, the fragmented aperture design functions in one or more of the Ku-band, K-band, and/or Ka-band. In another exemplary embodiment, the antenna system may include full electronic polarization agility. In one exemplary embodiment, the antenna system may further comprise a printed circuit board radiating element. The printed circuit board radiating element may be configured to function as an antenna. In one exemplary embodiment, the antenna system may support operation over multiple frequency bands.
    Type: Application
    Filed: May 24, 2016
    Publication date: September 22, 2016
    Applicant: VIASAT, INC.
    Inventors: DONALD L RUNYON, JOHN D VOSS
  • Publication number: 20160190674
    Abstract: In an example embodiment, an airborne radio frequency (RF) antenna device can comprise: a radiating portion; a waveguide portion connected to the radiating portion; a desiccant airflow channel; and an internal air volume located within the RF antenna device and associated with the desiccant airflow channel. The desiccant airflow channel can be integral with the RF antenna device. The internal air volume can be vented to the environment outside of the RF antenna device through the desiccant airflow channel.
    Type: Application
    Filed: February 13, 2015
    Publication date: June 30, 2016
    Applicant: VIASAT, INC.
    Inventors: JOHN D. VOSS, JAMES W. MAXWELL, JEREMY D. STANDRIDGE
  • Patent number: 8669827
    Abstract: The present invention is directed to a circuit assembly that includes an integrated circulator assembly. The circuit assembly has a first substrate, which contains a continuous circuit trace that includes a circulator component from the circulator assembly and at least one electrical component from the circuit assembly. A second substrate is disposed beneath the first substrate and includes a cladding on one surface. The second substrate contains an aperture that accepts a ferrite element, which is axially aligned with the circulator component of the circuit trace. A conductive material is placed across the ferrite element so that it forms a continuous ground plane with the cladding, which is common to the entire circuit trace. The circulator assembly also contains a magnet bonded to the ferrite element. The circulator assembly may also include a yoke disposed below the magnet to shield the circulator from external magnetic fields.
    Type: Grant
    Filed: July 19, 2013
    Date of Patent: March 11, 2014
    Assignee: EMS Technologies, Inc.
    Inventors: David J. Popelka, Joseph Todd Vaughn, John D. Voss
  • Publication number: 20130291381
    Abstract: The present invention is directed to a circuit assembly that includes an integrated circulator assembly. The circuit assembly has a first substrate, which contains a continuous circuit trace that includes a circulator component from the circulator assembly and at least one electrical component from the circuit assembly. A second substrate is disposed beneath the first substrate and includes a cladding on one surface. The second substrate contains an aperture that accepts a ferrite element, which is axially aligned with the circulator component of the circuit trace. A conductive material is placed across the ferrite element so that it forms a continuous ground plane with the cladding, which is common to the entire circuit trace. The circulator assembly also contains a magnet bonded to the ferrite element. The circulator assembly may also include a yoke disposed below the magnet to shield the circulator from external magnetic fields.
    Type: Application
    Filed: July 19, 2013
    Publication date: November 7, 2013
    Inventors: David J. Popelka, Joseph Todd Vaughn, John D. Voss
  • Patent number: 8514031
    Abstract: The present invention is directed to a circuit assembly that includes an integrated circulator assembly. The circuit assembly has a first substrate, which contains a continuous circuit trace that includes a circulator component from the circulator assembly and at least one electrical component from the circuit assembly. A second substrate is disposed beneath the first substrate and includes a cladding on one surface. The second substrate contains an aperture that accepts a ferrite element, which is axially aligned with the circulator component of the circuit trace. A conductive material is placed across the ferrite element so that it forms a continuous ground plane with the cladding, which is common to the entire circuit trace. The circulator assembly also contains a magnet bonded to the ferrite element. The circulator assembly may also include a yoke disposed below the magnet to shield the circulator from external magnetic fields.
    Type: Grant
    Filed: February 10, 2011
    Date of Patent: August 20, 2013
    Assignee: EMS Technologies, Inc.
    Inventors: David J. Popelka, Todd Vaughn, John D. Voss
  • Publication number: 20110193649
    Abstract: The present invention is directed to a circuit assembly that includes an integrated circulator assembly. The circuit assembly has a first substrate, which contains a continuous circuit trace that includes a circulator component from the circulator assembly and at least one electrical component from the circuit assembly. A second substrate is disposed beneath the first substrate and includes a cladding on one surface. The second substrate contains an aperture that accepts a ferrite element, which is axially aligned with the circulator component of the circuit trace. A conductive material is placed across the ferrite element so that it forms a continuous ground plane with the cladding, which is common to the entire circuit trace. The circulator assembly also contains a magnet bonded to the ferrite element. The circulator assembly may also include a yoke disposed below the magnet to shield the circulator from external magnetic fields.
    Type: Application
    Filed: February 10, 2011
    Publication date: August 11, 2011
    Applicant: EMS Technologies, Inc.
    Inventors: David J. Popelka, Todd Vaughn, John D. Voss