Patents by Inventor John D. Wahlstrand

John D. Wahlstrand has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20110130984
    Abstract: Methods for estimating a remaining service life of an implantable medical device (IMD) battery are presented. In one embodiment, a characteristic discharge model of the battery is employed. Systems employing the methods may include an external device coupled to the IMD, for example, via a telemetry communications link, wherein a first portion of a computer readable medium included in the IMD is programmed to provide instructions for the measurement, or tracking, of time and the measurement of battery voltage, and a second portion of the computer readable medium included in the external device is programmed to provide instructions for carrying out the calculations when the voltage and time data is transferred via telemetry from the IMD to the external device.
    Type: Application
    Filed: January 18, 2008
    Publication date: June 2, 2011
    Applicant: Medtronic, Inc.
    Inventors: Craig L. Schmidt, John D. Wahlstrand, Ann M. Crespi, Gregory A. Younker, James W. Busacker
  • Patent number: 7797047
    Abstract: An implantable medical device (IMD) includes a lead status monitoring system. The lead status monitoring system employs a method including the steps of: collecting data sets from a lead impedance source, a stimulation threshold source, and at least one additional source included in the IMD; and processing the data sets to determine if a lead status event has occurred.
    Type: Grant
    Filed: February 18, 2004
    Date of Patent: September 14, 2010
    Assignee: Medtronic, Inc.
    Inventors: David J. Jorgenson, Ross O. Starkson, Rick D. McVenes, Charles D. Trautmann, John D. Wahlstrand, Bradley C. Peck
  • Publication number: 20100198309
    Abstract: An implantable medical device is provided for isolating an elongated medical lead from internal device circuitry in the presence of a gradient magnetic or electrical field. The device includes an isolation circuit adapted to operatively connect an internal circuit to the medical lead in a first operative state and to electrically isolate the medical lead from the internal circuit in a second operative state.
    Type: Application
    Filed: April 13, 2010
    Publication date: August 5, 2010
    Inventors: Lonny V. Cabelka, David E. Manahan, Forrest C.M. Pape, John D. Wahlstrand
  • Patent number: 7729770
    Abstract: An implantable medical device is provided for isolating an elongated medical lead from internal device circuitry in the presence of a gradient magnetic or electrical field. The device includes an isolation circuit adapted to operatively connect an internal circuit to the medical lead in a first operative state and to electrically isolate the medical lead from the internal circuit in a second operative state.
    Type: Grant
    Filed: April 26, 2006
    Date of Patent: June 1, 2010
    Assignee: Medtronic, Inc.
    Inventors: Lonny V. Cabelka, David E. Manahan, Forrest C. M. Pape, John D. Wahlstrand
  • Publication number: 20100114223
    Abstract: A system and method for determining complex intercardiac impedance to detect various cardiac functions are disclosed involving a signal generator means for providing an adjustable direct current signal, a modulator for modulating the adjustable direct current signal to produce a modulated signal, at least one electrode for propagating the modulated signal across a myocardium, at least one sensor for detecting an outputted modulated signal from the myocardium, and at least one circuit to reduce the influence of process noise (aggressors) in the outputted modulated signal. The at least one circuit comprises an amplifier, a demodulator, and an integrator. The amplitude and phase of the final outputted modulated signal indicate the complex impedance of the myocardium. Changes in the complex impedance patterns of the myocardium provide indication of reduced oxygen and blood flow to the myocardium.
    Type: Application
    Filed: October 31, 2008
    Publication date: May 6, 2010
    Inventors: John D. Wahlstrand, Timothy J. Denison, Wesley A. Santa
  • Publication number: 20100113964
    Abstract: A system and method for determining complex intercardiac impedance to detect various cardiac functions are disclosed involving a signal generator means for providing an adjustable direct current signal, a modulator for modulating the adjustable direct current signal to produce a modulated signal, at least one electrode for propagating the modulated signal across a myocardium, at least one sensor for detecting an outputted modulated signal from the myocardium, and at least one circuit to reduce the influence of process noise (aggressors) in the outputted modulated signal. The at least one circuit comprises an amplifier, a demodulator, and an integrator. The amplitude and phase of the final outputted modulated signal indicate the complex impedance of the myocardium. Changes in the complex impedance patterns of the myocardium provide indication of reduced oxygen and blood flow to the myocardium.
    Type: Application
    Filed: October 31, 2008
    Publication date: May 6, 2010
    Inventors: John D. Wahlstrand, Timothy J. Denison, Wesley A. Santa
  • Publication number: 20080177345
    Abstract: Methods for estimating a remaining service life of an implantable medical device (IMD) battery employ calculations using a characteristic discharge model of the battery; the calculations require measurements of battery voltage and time. Systems employing the methods may include an external device coupled to the IMD, for example, via a telemetry communications link, wherein a first portion of a computer readable medium included in the IMD is programmed to provide instructions for the measurement, or tracking, of time and the measurement of battery voltage, and a second portion of the computer readable medium included in the external device is programmed to provide instructions for carrying out the calculations when the voltage and time data is transferred via telemetry from the IMD to the external device.
    Type: Application
    Filed: January 18, 2007
    Publication date: July 24, 2008
    Inventors: Craig L. Schmidt, Ann M. Crespi, Gregory A. Younker, James W. Busacker, John D. Wahlstrand
  • Patent number: 7031772
    Abstract: A method and an apparatus for performing rate responsive control in an implantable medical device using a scaling factor. Sensor data is acquired using a sensor operatively coupled with the implantable medical device. At least one setpoint for controlling a rate of therapy is generated, the setpoint being based upon the sensor data. A scaling factor adjustment process is performed for scaling the internal sensor data to correlate the sensor data to the setpoint. The rate of therapy is adjusted based upon the scaling factor adjustment.
    Type: Grant
    Filed: April 29, 2002
    Date of Patent: April 18, 2006
    Assignee: Medtronic, Inc.
    Inventors: Catherine R. Condie, John D. Wahlstrand, Gerald A. Portzline, Yong Kyun Cho, John S. Brandstetter, Luc R. Mongeon
  • Patent number: 6925331
    Abstract: A system and method for acquiring and processing an EGM signal during a pacing event, wherein a unique converter code is generated upon digitizing of the EGM signal and encrypted in the EGM signal to demarcate a transient event. The system further provides dynamic filtering of the EGM signal and subsequent detection of an intrinsic event signal during the pacing event, from which rhythm events may be diagnosed and classified.
    Type: Grant
    Filed: September 30, 2002
    Date of Patent: August 2, 2005
    Assignee: Medtronic, Ind.
    Inventors: Kent E. Samuelson, Michael T. Hemming, Michael W. Heinks, Ross O. Starkson, Lori Durose-Schrimpf, John D. Wahlstrand
  • Patent number: 6788973
    Abstract: An implanted medical device (IMD) conserves power by discriminating received radio frequency (RF) signals between noise and data based on frequency. Data is processed while noise is attenuated. The IMD operates in a first, relatively low, power mode while not receiving the RF signals, in a second, higher, power mode responsive to receiving RF signals, and operates in still higher power mode when the RF signals' average frequency over a selected period is within a predetermined range. A receiver circuit receives RF signals and discriminates a data signal from noise based on average frequency of the RF signals over selected time periods. The receiver circuit operates in a power-conserving mode unless it receives RF signals, or otherwise operates in a relatively higher-power mode. The receiver transfers signals to a telemetry circuit that operates in a power-conserving mode until it receives a valid data signal to operate in higher power mode.
    Type: Grant
    Filed: April 2, 2002
    Date of Patent: September 7, 2004
    Assignee: Medtronic, Inc.
    Inventors: Timothy J. Davis, Robert M. Ecker, James D. Reinke, John D. Wahlstrand
  • Publication number: 20040162593
    Abstract: A system for monitoring trends in lead impedance includes collecting data from various sources in an implantable medical device system. Lead impedance, non-physiologic sensed events percentage of time in mode switch, results of capture management operation, sensed events, adversion pace counts, refractory sense counts and similar data are used to determine the status of a lead. A set of weighted sum rules are implemented by a software system to process the data and provide displayable information to health care professionals via a programmer. The lead monitoring system includes a patient alert system for patients to seek help in the event a serious lead condition is identified.
    Type: Application
    Filed: February 18, 2004
    Publication date: August 19, 2004
    Applicant: Medtronic, Inc.
    Inventors: David J. Jorgenson, Ross O. Starkson, Rick D. McVenes, Charles D. Trautmann, John D. Wahlstrand, Bradley C. Peck
  • Patent number: 6721600
    Abstract: A system for monitoring trends in lead impedance includes collecting data from various sources in an implantable medical device system. Lead impedance, non-physiologic sensed events percentage of time in mode switch, results of capture management operation, sensed events, adversion pace counts, refractory sense counts and similar data are used to determine the status of a lead. A set of weighted sum rules are implemented by a software system to process the data and provide displayable information to health care professionals via a programmer. The lead monitoring system includes a patient alert system for patients to seek help in the event a serious lead condition is identified.
    Type: Grant
    Filed: December 31, 2001
    Date of Patent: April 13, 2004
    Assignee: Medtronic, Inc.
    Inventors: David J. Jorgenson, Ross O. Starkson, Rick D. McVenes, Charles D. Trautmann, John D. Wahlstrand, Bradley C. Peck
  • Publication number: 20040064059
    Abstract: A system and method for acquiring and processing an EGM signal during a pacing event, wherein a unique converter code is generated upon digitizing of the EGM signal and encrypted in the EGM signal to demarcate a transient event. The system further provides dynamic filtering of the EGM signal and subsequent detection of an intrinsic event signal during the pacing event, from which rhythm events may be diagnosed and classified.
    Type: Application
    Filed: September 30, 2002
    Publication date: April 1, 2004
    Inventors: Kent Samuelson, Michael T. Hemming, Michael W. Heinks, Ross O. Starkson, Lori Durose-Schrimpf, John D. Wahlstrand
  • Patent number: 6681135
    Abstract: A medical implantable device that includes a temperature sensor circuit and a control circuit coupled to the temperature sensor circuit to control non-therapy operation of the medical implantable device in response to temperature measurements obtained by the temperature sensor circuit.
    Type: Grant
    Filed: November 22, 2000
    Date of Patent: January 20, 2004
    Assignee: Medtronic, Inc.
    Inventors: Timothy J. Davis, James D. Reinke, David W. Graden, John D. Wahlstrand
  • Publication number: 20030204211
    Abstract: A method and an apparatus for performing rate responsive control in an implantable medical device using a scaling factor. Sensor data is acquired using a sensor operatively coupled with the implantable medical device. At least one setpoint for controlling a rate of therapy is generated, the setpoint being based upon the sensor data. A scaling factor adjustment process is performed for scaling the internal sensor data to correlate the sensor data to the setpoint. The rate of therapy is adjusted based upon the scaling factor adjustment.
    Type: Application
    Filed: April 29, 2002
    Publication date: October 30, 2003
    Inventors: Catherine R. Condie, John D. Wahlstrand, Gerald A. Portzline, Yong Kyun Cho, John S. Brandstetter, Luc R. Mongeon
  • Publication number: 20030187484
    Abstract: An implanted medical device (IMD) conserves power by discriminating received radio frequency (RF) signals between noise and data based on frequency. Data is processed while noise is attenuated. The IMD operates in a first, relatively low, power mode while not receiving the RF signals, in a second, higher, power mode responsive to receiving RF signals, and operates in still higher power mode when the RF signals' average frequency over a selected period is within a predetermined range. A receiver circuit receives RF signals and discriminates a data signal from noise based on average frequency of the RF signals over selected time periods. The receiver circuit operates in a power-conserving mode unless it receives RF signals, or otherwise operates in a relatively higher-power mode. The receiver transfers signals to a telemetry circuit that operates in a power-conserving mode until it receives a valid data signal to operate in higher power mode.
    Type: Application
    Filed: April 2, 2002
    Publication date: October 2, 2003
    Inventors: Timothy J. Davis, Robert M. Ecker, James D. Reinke, John D. Wahlstrand
  • Patent number: 6512949
    Abstract: An impedance monitor for discerning edema through evaluation of respiratory rate. Preferred embodiment includes edema monitor and trigger to initiate diagnostic reporting or corrective action when activated. Recording of Long Term Average and Short Term Average values for secondary edema measure based on DC signal level are described as are methods and apparatus for removing unwanted recurring noise.
    Type: Grant
    Filed: July 12, 1999
    Date of Patent: January 28, 2003
    Assignee: Medtronic, Inc.
    Inventors: William J. Combs, Catherine R. Condie, Roy Martin, Dwight H. Warkentin, John D. Wahlstrand, David L. Thompson, Li Wang
  • Publication number: 20020120307
    Abstract: A system for monitoring trends in lead impedance includes collecting data from various sources in an implantable medical device system. Lead impedance, non-physiologic sensed events percentage of time in mode switch, results of capture management operation, sensed events, adversion pace counts, refractory sense counts and similar data are used to determine the status of a lead. A set of weighted sum rules are implemented by a software system to process the data and provide displayable information to health care professionals via a programmer. The lead monitoring system includes a patient alert system for patients to seek help in the event a serious lead condition is identified.
    Type: Application
    Filed: December 31, 2001
    Publication date: August 29, 2002
    Applicant: Medtronic, Inc.
    Inventors: David J. Jorgenson, Ross O. Starkson, Rick D. McVenes, Charles D. Trautmann, John D. Wahlstrand, Bradley C. Peck
  • Patent number: 6317633
    Abstract: An implantable medical device (IMD) coupled with leads extending to body tissue providing storage of lead related data, monitoring of lead functional status, and indication of lead integrity to the clinician. A lead status monitor (LSM) processes lead related data in a system self test mode and provides a lead status report that identifies and declares conductor/connector issues, insulation issues, and electrode/tissue interface issues indicative of suspected lead related condition mechanisms for each lead employed in the IMD. The LSM operates employing a set of LSM rules that process measured lead impedance values and loss of capture (LOC) values. In a pacing system, particular LSM rules are defined that process periodically determined, pacing pulse characteristic at LOC and bipolar and unipolar lead impedance values that are measured periodically. The lead impedance values are compared to upper and lower limits or trip points of a normal impedance range.
    Type: Grant
    Filed: January 19, 2000
    Date of Patent: November 13, 2001
    Assignee: Medtronic, Inc.
    Inventors: David J. Jorgenson, Ross O. Starkson, Rick D. McVenes, Charles D. Trautmann, John D. Wahlstrand, Bradley C. Peck
  • Patent number: 6208900
    Abstract: In a pacemaker, a method and apparatus for providing rate response in proportion to the patient's metabolic demand for cardiac output as determined in response to the patient's breathing rate or respiratory minute ventilation or contraction strength, optionally augmented by the patient's activity level. An implantable pulse generator (IPG) has one or more pacing leads having a proximal end coupled to the IPG and a distal end in contact with a patient's heart. A pressure wave transducer mounted in the IPG in relation to the proximal end of the pacing lead senses pressure waves transmitted from the distal end of the pacing lead to the proximal end thereof. The pressure waves originate from disturbances imparted to the lead by heart contractions and breathing. A further isolated, reference sensor is also incorporated into the IPG in a similar fashion. An activity signal processor is coupled to the pressure wave or reference sensor for providing a patient activity physiologic signal.
    Type: Grant
    Filed: March 28, 1996
    Date of Patent: March 27, 2001
    Assignee: Medtronic, Inc.
    Inventors: Robert M. Ecker, Lawrence C. McClure, John D. Wahlstrand