Patents by Inventor John D. Welter

John D. Welter has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11612738
    Abstract: Conductors within an implantable medical lead that carry stimulation signal signals are at least partially embedded within a lead body of the medical lead over at least a portion of the length of the conductors while being surrounded by a radio frequency (RF) shield. A space between the shield and the conductors is filled by the presence of the lead body material such that body fluids that infiltrate the lead over time cannot pool in the space between the shield and the conductors. The dielectric properties of the lead body are retained and the capacitive coupling between the shield and the conductors continues to be inhibited such that current induced on the shield is inhibited from being channeled onto the conductors. Heating at the electrodes of the medical lead is prevented from becoming excessive.
    Type: Grant
    Filed: August 17, 2020
    Date of Patent: March 28, 2023
    Assignee: MEDTRONIC, INC.
    Inventors: Jamu K. Alford, Spencer Fodness Bondhus, Michael Kalm, James M. Olsen, Brian T. Stolz, Richard T. Stone, Bryan D. Stem, John D. Welter
  • Patent number: 11167154
    Abstract: A system for use in managing a neuromodulation therapy includes an ultrasound transducer array controlled by a control unit to deliver ultrasound waveforms for causing modulation of neural tissue in a patient. The system acquires data indicating a response to the modulation, analyzes the acquired data to determine correlation data between a response to the modulation and an ultrasound control parameter, and reports the correlation data to enable identification of at least one therapy parameter to be used to deliver a neuromodulation therapy to the patient by a therapy delivery system.
    Type: Grant
    Filed: January 24, 2013
    Date of Patent: November 9, 2021
    Assignee: Medtronic, Inc.
    Inventors: Jamu Alford, Steven M. Goetz, Lothar Krinke, Mark S. Lent, Erik R. Scott, Xuan K. Wei, John D. Welter
  • Publication number: 20210282952
    Abstract: An endovascular catheter system includes a stent graft system and a delivery system that are separately connected to one another. In embodiments, the stent graft system includes a stent graft configured to expand radially outwardly, and a stent graft cover surrounding at least a portion of the stent graft and configured to maintain the stent graft in a constricted configuration. The stent graft cover can slide relative to the stent graft to enable the stent graft to expand radially outward. A hollow stent graft middle member is located radially inward of the stent graft cover. The delivery system is coupled to the stent graft system and includes a delivery system outer cover configured to assemble to the stent graft cover.
    Type: Application
    Filed: March 13, 2020
    Publication date: September 16, 2021
    Inventor: John D. WELTER
  • Patent number: 10980996
    Abstract: Magnetic orientation-independent magnetically actuated switches may be made by producing an outer cylinder and an actuator cylinder from ferromagnetic sheets and non-ferromagnetic sheets in alternating order. A first ferromagnetic body is attached to an end of the outer cylinder. The actuator cylinder is positioned within a first bore of the outer cylinder, the actuator pin is positioned within a second bore of the actuator cylinder and a third bore of the first ferromagnetic body with a portion of the actuator pin extending beyond the third bore of the first ferromagnetic body. A second ferromagnetic body is attached to the portion of the actuator pin, thus forming the magnetic orientation-independent magnetically operated switch.
    Type: Grant
    Filed: September 22, 2018
    Date of Patent: April 20, 2021
    Assignee: MEDTRONIC, INC.
    Inventors: Richard T. Stone, Spencer Fodness-Bondhus, Walter Doell, John D. Welter, Guillaume Schmit, Niklaus Schneeberger
  • Publication number: 20200376260
    Abstract: Conductors within an implantable medical lead that carry stimulation signal signals are at least partially embedded within a lead body of the medical lead over at least a portion of the length of the conductors while being surrounded by a radio frequency (RF) shield. A space between the shield and the conductors is filled by the presence of the lead body material such that body fluids that infiltrate the lead over time cannot pool in the space between the shield and the conductors. The dielectric properties of the lead body are retained and the capacitive coupling between the shield and the conductors continues to be inhibited such that current induced on the shield is inhibited from being channeled onto the conductors. Heating at the electrodes of the medical lead is prevented from becoming excessive.
    Type: Application
    Filed: August 17, 2020
    Publication date: December 3, 2020
    Inventors: Jamu K. Alford, Spencer Fodness Bondhus, Michael Kalm, James M. Olsen, Brian T. Stolz, Richard T. Stone, Bryan D. Stem, John D. Welter
  • Patent number: 10751525
    Abstract: Conductors within an implantable medical lead that carry stimulation signal signals are at least partially embedded within a lead body of the medical lead over at least a portion of the length of the conductors while being surrounded by a radio frequency (RF) shield. A space between the shield and the conductors is filled by the presence of the lead body material such that body fluids that infiltrate the lead over time cannot pool in the space between the shield and the conductors. The dielectric properties of the lead body are retained and the capacitive coupling between the shield and the conductors continues to be inhibited such that current induced on the shield is inhibited from being channeled onto the conductors. Heating at the electrodes of the medical lead is prevented from becoming excessive.
    Type: Grant
    Filed: June 11, 2018
    Date of Patent: August 25, 2020
    Assignee: MEDTRONIC, INC.
    Inventors: Jamu K. Alford, Spencer Fodness Bondhus, Michael Kalm, James M. Olsen, Brian T. Stolz, Richard T. Stone, Bryan D. Stem, John D. Welter
  • Publication number: 20190022381
    Abstract: Implantable medical systems include implantable medical leads that have magnetic orientation-independent magnetically actuated switches that are placed in the conduction path to the electrode of the lead. Thus, regardless of the orientation of a substantial magnetic field like that from an MRI machine to the lead and switch within the lead, the switch opens when in the presence of that substantial magnetic field. The switch may be placed in close proximity to the electrode such that the opening of the switch disconnects the electrode from the majority of the conduction path which thereby produces a high impedance for RF current and reduces the amount of heating that may occur at the electrode when in the presence of substantial levels of RF electromagnetic energy as may occur within an MRI machine.
    Type: Application
    Filed: September 22, 2018
    Publication date: January 24, 2019
    Inventors: RIchard T. Stone, Spencer Fodness-Bondhus, Walter Doell, John D. Welter, Guillaume Schmit, Niklaus Schneeberger
  • Publication number: 20180289947
    Abstract: Conductors within an implantable medical lead that carry stimulation signal signals are at least partially embedded within a lead body of the medical lead over at least a portion of the length of the conductors while being surrounded by a radio frequency (RF) shield. A space between the shield and the conductors is filled by the presence of the lead body material such that body fluids that infiltrate the lead over time cannot pool in the space between the shield and the conductors. The dielectric properties of the lead body are retained and the capacitive coupling between the shield and the conductors continues to be inhibited such that current induced on the shield is inhibited from being channeled onto the conductors. Heating at the electrodes of the medical lead is prevented from becoming excessive.
    Type: Application
    Filed: June 11, 2018
    Publication date: October 11, 2018
    Inventors: Jamu K. Alford, Spencer Fodness Bondhus, Michael Kalm, James M. Olsen, Brian T. Stolz, Richard T. Stone, Bryan D. Stem, John D. Welter
  • Patent number: 10086195
    Abstract: Implantable medical systems include implantable medical leads that have magnetic orientation-independent magnetically actuated switches that are placed in the conduction path to the electrode of the lead. Thus, regardless of the orientation of a substantial magnetic field like that from an MRI machine to the lead and switch within the lead, the switch opens when in the presence of that substantial magnetic field. The switch may be placed in close proximity to the electrode such that the opening of the switch disconnects the electrode from the majority of the conduction path which thereby produces a high impedance for RF current and reduces the amount of heating that may occur at the electrode when in the presence of substantial levels of RF electromagnetic energy as may occur within an MRI machine.
    Type: Grant
    Filed: December 13, 2017
    Date of Patent: October 2, 2018
    Assignee: MEDTRONIC, INC.
    Inventors: Richard T. Stone, Spencer M. Bondhus, Walter Doell, John D. Welter, Guillaume Schmit, Niklaus Schneeberger
  • Patent number: 9993638
    Abstract: Conductors within an implantable medical lead that carry stimulation signal signals are at least partially embedded within a lead body of the medical lead over at least a portion of the length of the conductors while being surrounded by a radio frequency (RF) shield. A space between the shield and the conductors is filled by the presence of the lead body material such that body fluids that infiltrate the lead over time cannot pool in the space between the shield and the conductors. The dielectric properties of the lead body are retained and the capacitive coupling between the shield and the conductors continues to be inhibited such that current induced on the shield is inhibited from being channeled onto the conductors. Heating at the electrodes of the medical lead is prevented from becoming excessive.
    Type: Grant
    Filed: December 12, 2014
    Date of Patent: June 12, 2018
    Assignee: MEDTRONIC, INC.
    Inventors: Jamu K. Alford, Spencer M. Bondhus, Michael Kalm, James M. Olsen, Brian T. Stolz, Richard T. Stone, Bryan D. Stem, John D. Welter
  • Publication number: 20180104483
    Abstract: Implantable medical systems include implantable medical leads that have magnetic orientation-independent magnetically actuated switches that are placed in the conduction path to the electrode of the lead. Thus, regardless of the orientation of a substantial magnetic field like that from an MRI machine to the lead and switch within the lead, the switch opens when in the presence of that substantial magnetic field. The switch may be placed in close proximity to the electrode such that the opening of the switch disconnects the electrode from the majority of the conduction path which thereby produces a high impedance for RF current and reduces the amount of heating that may occur at the electrode when in the presence of substantial levels of RF electromagnetic energy as may occur within an MRI machine.
    Type: Application
    Filed: December 13, 2017
    Publication date: April 19, 2018
    Inventors: Richard T. Stone, Spencer M. Bondhus, Walter Doell, John D. Welter, Guillaume Schmit, Niklaus Schneeberger
  • Patent number: 9855422
    Abstract: Implantable medical systems include implantable medical leads that have magnetic orientation-independent magnetically actuated switches that are placed in the conduction path to the electrode of the lead. Thus, regardless of the orientation of a substantial magnetic field like that from an MRI machine to the lead and switch within the lead, the switch opens when in the presence of that substantial magnetic field. The switch may be placed in close proximity to the electrode such that the opening of the switch disconnects the electrode from the majority of the conduction path which thereby produces a high impedance for RF current and reduces the amount of heating that may occur at the electrode when in the presence of substantial levels of RF electromagnetic energy as may occur within an MRI machine.
    Type: Grant
    Filed: February 27, 2017
    Date of Patent: January 2, 2018
    Assignee: MEDTRONIC, INC.
    Inventors: Richard T. Stone, Spencer M. Bondhus, Walter Doell, John D. Welter, Guillaume Schmit, Niklaus Schneeberger
  • Publication number: 20170189677
    Abstract: Implantable medical systems include implantable medical leads that have magnetic orientation-independent magnetically actuated switches that are placed in the conduction path to the electrode of the lead. Thus, regardless of the orientation of a substantial magnetic field like that from an MRI machine to the lead and switch within the lead, the switch opens when in the presence of that substantial magnetic field. The switch may be placed in close proximity to the electrode such that the opening of the switch disconnects the electrode from the majority of the conduction path which thereby produces a high impedance for RF current and reduces the amount of heating that may occur at the electrode when in the presence of substantial levels of RF electromagnetic energy as may occur within an MRI machine.
    Type: Application
    Filed: February 27, 2017
    Publication date: July 6, 2017
    Inventors: Richard T. Stone, Spencer M. Bondhus, Walter Doell, John D. Welter, Guillaume Schmit, Niklaus Schneeberger
  • Patent number: 9579502
    Abstract: Implantable medical systems include implantable medical leads that have magnetic orientation-independent magnetically actuated switches that are placed in the conduction path to the electrode of the lead. Thus, regardless of the orientation of a substantial magnetic field like that from an MRI machine to the lead and switch within the lead, the switch opens when in the presence of that substantial magnetic field. The switch may be placed in close proximity to the electrode such that the opening of the switch disconnects the electrode from the majority of the conduction path which thereby produces a high impedance for RF current and reduces the amount of heating that may occur at the electrode when in the presence of substantial levels of RF electromagnetic energy as may occur within an MRI machine.
    Type: Grant
    Filed: April 13, 2015
    Date of Patent: February 28, 2017
    Assignee: MEDTRONIC, INC.
    Inventors: Richard T. Stone, Spencer M. Bondhus, Walter Doell, John D. Welter, Guillaume Schmit, Niklaus Schneeberger
  • Publication number: 20170007853
    Abstract: In some examples, a system includes a flexible ultrasound device configured to be attached to an external surface of a patient proximate to an organ of the patient to deliver ultrasound configured to modulate nerve tissue of the patient at the organ. The system further comprises one or more sensors configured to sense one or more physiological parameters indicative of at least one of a symptom treatable by, or a side effect of, the neuromodulation, and processing circuitry configured to control the delivery of ultrasound during an ambulatory period of the patient, and monitor the least one of the symptom or the side effect during the ambulatory period, based on the one or more physiological parameters. The organ may be the spleen and the ultrasound may at least one of regulate the autoimmune system of the patient, or reduce an inflammation response of the patient.
    Type: Application
    Filed: July 7, 2016
    Publication date: January 12, 2017
    Inventors: Jamu K. Alford, Erik R. Scott, John D. Welter, John R. LaLonde, Yohan Kim
  • Publication number: 20150297886
    Abstract: Implantable medical systems include implantable medical leads that have magnetic orientation-independent magnetically actuated switches that are placed in the conduction path to the electrode of the lead. Thus, regardless of the orientation of a substantial magnetic field like that from an MRI machine to the lead and switch within the lead, the switch opens when in the presence of that substantial magnetic field. The switch may be placed in close proximity to the electrode such that the opening of the switch disconnects the electrode from the majority of the conduction path which thereby produces a high impedance for RF current and reduces the amount of heating that may occur at the electrode when in the presence of substantial levels of RF electromagnetic energy as may occur within an MRI machine.
    Type: Application
    Filed: April 13, 2015
    Publication date: October 22, 2015
    Inventors: Richard T. Stone, Spencer M. Bondhus, Walter Doell, John D. Welter, Guillaume Schmit, Niklaus Schneeberger
  • Publication number: 20150170792
    Abstract: Conductors within an implantable medical lead that carry stimulation signal signals are at least partially embedded within a lead body of the medical lead over at least a portion of the length of the conductors while being surrounded by a radio frequency (RF) shield. A space between the shield and the conductors is filled by the presence of the lead body material such that body fluids that infiltrate the lead over time cannot pool in the space between the shield and the conductors. The dielectric properties of the lead body are retained and the capacitive coupling between the shield and the conductors continues to be inhibited such that current induced on the shield is inhibited from being channeled onto the conductors. Heating at the electrodes of the medical lead is prevented from becoming excessive.
    Type: Application
    Filed: December 12, 2014
    Publication date: June 18, 2015
    Inventors: Jamu K. Alford, Spencer M. Bondhus, Michael Kalm, James M. Olsen, Brian T. Stolz, Richard T. Stone, Bryan D. Stem, John D. Welter
  • Publication number: 20140058292
    Abstract: A system for use in managing a neuromodulation therapy includes an ultrasound transducer array controlled by a control unit to deliver ultrasound waveforms for causing modulation of neural tissue in a patient. The system acquires data indicating a response to the modulation, analyzes the acquired data to determine correlation data between a response to the modulation and an ultrasound control parameter, and reports the correlation data to enable identification of at least one therapy parameter to be used to deliver a neuromodulation therapy to the patient by a therapy delivery system.
    Type: Application
    Filed: January 24, 2013
    Publication date: February 27, 2014
    Applicant: Medtronic, Inc.
    Inventors: Jamu Alford, Steven M. Goetz, Lothar Krinke, Mark S. Lent, Erik R. Scott, Xuan K. Wei, John D. Welter