Patents by Inventor John D. Winter

John D. Winter has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240123401
    Abstract: The invention present provides a method (and suitable apparatus) to convert biomass to ethanol, comprising gasifying the biomass to produce raw syngas; feeding the raw syngas to an acid-gas removal unit to remove at least some CO2 and produce a conditioned syngas stream; feeding the conditioned syngas stream to a fermentor to biologically convert the syngas to ethanol; capturing a tail gas from an exit of the fermentor, wherein the tail gas comprises at least CO2 and unconverted CO or H2; and recycling a first portion of the tail gas to the fermentor and/or a second portion of the tail gas to the acid-gas removal unit. This invention allows for increased syngas conversion to ethanol, improved process efficiency, and better overall biorefinery economics for conversion of biomass to ethanol.
    Type: Application
    Filed: December 27, 2023
    Publication date: April 18, 2024
    Inventors: John D. WINTER, Jerrod HOHMAN
  • Patent number: 11857923
    Abstract: The invention present provides a method (and suitable apparatus) to convert biomass to ethanol, comprising gasifying the biomass to produce raw syngas; feeding the raw syngas to an acid-gas removal unit to remove at least some CO2 and produce a conditioned syngas stream; feeding the conditioned syngas stream to a fermentor to biologically convert the syngas to ethanol; capturing a tail gas from an exit of the fermentor, wherein the tail gas comprises at least CO2 and unconverted CO or H2; and recycling a first portion of the tail gas to the fermentor and/or a second portion of the tail gas to the acid-gas removal unit. This invention allows for increased syngas conversion to ethanol, improved process efficiency, and better overall biorefinery economics for conversion of biomass to ethanol.
    Type: Grant
    Filed: December 1, 2021
    Date of Patent: January 2, 2024
    Assignee: LanzaTech, Inc.
    Inventors: John D. Winter, Jerrod Hohman
  • Patent number: 11480980
    Abstract: An anti-spin system for an aircraft can include an anti-spin module configured to execute a computer implemented method. The method can include receiving flight data from one or more aircraft flight data systems, determining if the aircraft is near stall or in a stall using the flight data, and determining if the aircraft is in uncoordinated flight while near stall or in a stall to determine if the aircraft is near spin or in a spin using the flight data. If the aircraft is determined to be near spin, the method includes at least one of sending an alert to a warning indicator in a cockpit to warn the pilot of a spin or near spin condition, or sending a signal to an automated control system for inputting automatic control to the aircraft to avoid a spin by coordinating the aircraft or avoiding a stall while uncoordinated.
    Type: Grant
    Filed: September 19, 2018
    Date of Patent: October 25, 2022
    Assignee: Rosemount Aerospace Inc.
    Inventors: Brian Brent Naslund, John D. Winter
  • Patent number: 11472568
    Abstract: A aircraft health management system for identifying an anomalous signal from one or more air data systems (ADS) includes one or more of a frequency processor, configured to provide a spectral signal that is representative of a frequency content of the first ADS signal, a noise processor, configured to provide a noise signal that is representative of a noise level of the first ADS signal, and a rate processor, configured to provide a rate signal that is representative of a rate of change of the first ADS signal. The aircraft health management system also includes a comparator configured to provide a differential signal between the first ADS signal and the second ADS signal, and a prognostic processor configured to determine if the ADS signal is anomalous by comparing values representative of a flight condition signal, the differential signal, and the spectral, noise, and/or rate signals.
    Type: Grant
    Filed: May 16, 2019
    Date of Patent: October 18, 2022
    Assignee: ROSEMOUNT AEROSPACE INC.
    Inventors: Wesley J. Schwartz, Brian Brent Naslund, John D. Winter, Joel Boelke
  • Patent number: 11293815
    Abstract: A system for correcting an air temperature (AT) reading can include a water content sensor configured to measure a water content in an airflow and to output a water content signal indicative thereof, an AT sensor configured to measure an air temperature and output an AT signal indicative thereof, and a correction module operatively connected to the water content sensor and the AT sensor. The correction module can be configured to receive the water content signal and the AT signal and to correct the AT signal based on the water content to output a corrected AT signal.
    Type: Grant
    Filed: July 20, 2018
    Date of Patent: April 5, 2022
    Assignee: Rosemount Aerospace Inc.
    Inventors: John D. Winter, Wesley J. Schwartz, Darren G. Jackson
  • Publication number: 20220080353
    Abstract: The invention present provides a method (and suitable apparatus) to convert biomass to ethanol, comprising gasifying the biomass to produce raw syngas; feeding the raw syngas to an acid-gas removal unit to remove at least some CO2 and produce a conditioned syngas stream; feeding the conditioned syngas stream to a fermentor to biologically convert the syngas to ethanol; capturing a tail gas from an exit of the fermentor, wherein the tail gas comprises at least CO2 and unconverted CO or H2; and recycling a first portion of the tail gas to the fermentor and/or a second portion of the tail gas to the acid-gas removal unit. This invention allows for increased syngas conversion to ethanol, improved process efficiency, and better overall biorefinery economics for conversion of biomass to ethanol.
    Type: Application
    Filed: December 1, 2021
    Publication date: March 17, 2022
    Inventors: John D. WINTER, Jerrod HOHMAN
  • Patent number: 11202989
    Abstract: The invention present provides a method (and suitable apparatus) to convert biomass to ethanol, comprising gasifying the biomass to produce raw syngas; feeding the raw syngas to an acid-gas removal unit to remove at least some CO2 and produce a conditioned syngas stream; feeding the conditioned syngas stream to a fermentor to biologically convert the syngas to ethanol; capturing a tail gas from an exit of the fermentor, wherein the tail gas comprises at least CO2 and unconverted CO or H2; and recycling a first portion of the tail gas to the fermentor and/or a second portion of the tail gas to the acid-gas removal unit. This invention allows for increased syngas conversion to ethanol, improved process efficiency, and better overall biorefinery economics for conversion of biomass to ethanol.
    Type: Grant
    Filed: January 24, 2020
    Date of Patent: December 21, 2021
    Assignee: LanzaTech, Inc.
    Inventors: John D Winter, Jerrod Hohman
  • Patent number: 11015955
    Abstract: An air data system for an aircraft includes a multi-function probe (MFP) and an inertial reference unit (IRU). The MFP is positioned to sense a pressure of airflow about an exterior of the aircraft. A first electronics channel of the MFP is electrically coupled to the IRU to generate air data parameter outputs based on the pressure sensed by the MFP and inertial data sensed by the IRU.
    Type: Grant
    Filed: June 15, 2018
    Date of Patent: May 25, 2021
    Assignee: Rosemount Aerospace Inc.
    Inventors: Brian Brent Naslund, John D. Winter, Joel Boelke
  • Publication number: 20200361627
    Abstract: A aircraft health management system for identifying an anomalous signal from one or more air data systems (ADS) includes one or more of a frequency processor, configured to provide a spectral signal that is representative of a frequency content of the first ADS signal, a noise processor, configured to provide a noise signal that is representative of a noise level of the first ADS signal, and a rate processor, configured to provide a rate signal that is representative of a rate of change of the first ADS signal. The aircraft health management system also includes a comparator configured to provide a differential signal between the first ADS signal and the second ADS signal, and a prognostic processor configured to determine if the ADS signal is anomalous by comparing values representative of a flight condition signal, the differential signal, and the spectral, noise, and/or rate signals.
    Type: Application
    Filed: May 16, 2019
    Publication date: November 19, 2020
    Inventors: Wesley J. Schwartz, Brian Brent Naslund, John D. Winter, Joel Boelke
  • Publication number: 20200089258
    Abstract: An anti-spin system for an aircraft can include an anti-spin module configured to execute a computer implemented method. The method can include receiving flight data from one or more aircraft flight data systems, determining if the aircraft is near stall or in a stall using the flight data, and determining if the aircraft is in uncoordinated flight while near stall or in a stall to determine if the aircraft is near spin or in a spin using the flight data. If the aircraft is determined to be near spin, the method includes at least one of sending an alert to a warning indicator in a cockpit to warn the pilot of a spin or near spin condition, or sending a signal to an automated control system for inputting automatic control to the aircraft to avoid a spin by coordinating the aircraft or avoiding a stall while uncoordinated.
    Type: Application
    Filed: September 19, 2018
    Publication date: March 19, 2020
    Inventors: Brian Brent Naslund, John D. Winter
  • Publication number: 20200025632
    Abstract: A system for correcting an air temperature (AT) reading can include a water content sensor configured to measure a water content in an airflow and to output a water content signal indicative thereof, an AT sensor configured to measure an air temperature and output an AT signal indicative thereof, and a correction module operatively connected to the water content sensor and the AT sensor. The correction module can be configured to receive the water content signal and the AT signal and to correct the AT signal based on the water content to output a corrected AT signal.
    Type: Application
    Filed: July 20, 2018
    Publication date: January 23, 2020
    Applicant: Rosemount Aerospace Inc.
    Inventors: John D. Winter, Wesley J. Schwartz, Darren G. Jackson
  • Patent number: 10518238
    Abstract: The present invention relates to apparatuses for fluidized bed using multiple jets to introduce gas into a fluidized bed region and methods of fluidizing. The apparatus for introducing fluidizing medium to a fluidized bed reactor comprises a vessel defining a fluidized bed region and in which solid feed stock is fed, a gas distribution grid housed in the lower portion of the vessel through which a first fluidizing medium is introduced to fluidize the solid feed stock, a plurality of jets positioned through the gas distribution grid through which a second fluidizing medium is introduced into the fluidized bed region for fluidization of the solid feed stock.
    Type: Grant
    Filed: March 14, 2014
    Date of Patent: December 31, 2019
    Assignee: SYNTHESIS ENERGY SYSTEMS, INC.
    Inventor: John D. Winter
  • Publication number: 20190383639
    Abstract: An air data system for an aircraft includes a multi-function probe (MFP) and an inertial reference unit (IRU). The MFP is positioned to sense a pressure of airflow about an exterior of the aircraft. A first electronics channel of the MFP is electrically coupled to the IRU to generate air data parameter outputs based on the pressure sensed by the MFP and inertial data sensed by the IRU.
    Type: Application
    Filed: June 15, 2018
    Publication date: December 19, 2019
    Inventors: Brian Brent Naslund, John D. Winter, Joel Boelke
  • Publication number: 20190217966
    Abstract: A set of aircraft air data parameter outputs is generated based on laser sensor data and inertial sensor data. Directional light is emitted in one or more directions into air about an exterior of an aircraft, and returns of the emitted directional light in the one or more directions is sensed. Laser sensor data representing velocity of the aircraft in the one or more directions, static pressure of the air, and static air temperature of the air is generated based on the sensed returns. Acceleration and rotational rate of the aircraft is sensed in three axes. The set of aircraft air data parameter outputs is generated based on the laser sensor data and the inertial sensor data. The set of aircraft air data parameter outputs includes aircraft static air pressure, aircraft static air temperature, aircraft true airspeed, aircraft angle of attack, and aircraft angle of sideslip.
    Type: Application
    Filed: January 12, 2018
    Publication date: July 18, 2019
    Inventor: John D. Winter
  • Patent number: 10093996
    Abstract: Method, apparatus and system for improved energy efficiency in a direct reduction iron production process which uses a direct reduction shaft furnace and syngas as the reduction gas. The method and system of the invention use a part of the top gas emanating from the shaft furnace as transport gas for the gasifier, and control the volume of the top gas used as recycled top gas or fuel for the gas heater. The present invention achieves high energy efficiency, and reduces the need to use additional CH4 source for the reduction gas.
    Type: Grant
    Filed: December 14, 2015
    Date of Patent: October 9, 2018
    Assignee: SYNTHESIS ENERGY SYSTEMS, INC.
    Inventors: John D. Winter, Haruyasu Michishita
  • Patent number: 9421510
    Abstract: An apparatus for cooling a gas distribution grid of fluidized bed gasifier and a method is provided in the present invention. The apparatus comprises a gas flow failure event detector for detecting a gasifying gas flow failure event, a flow control device for controlling the introduction of a flow stream of a liquid material into a spraying device placed in the plenum space of the gasifier, wherein the gas flow failure event detector is in signal connection with the flow control device, and a spraying device for spraying into the plenum space the liquid material as mist which evaporates and generates a positive pressure to cause through the gas distribution grid a flow which prevents the hot bed material from settling on the gas distribution grid.
    Type: Grant
    Filed: March 14, 2014
    Date of Patent: August 23, 2016
    Assignee: SYNTHESIS ENERGY SYSTEMS, INC.
    Inventor: John D. Winter
  • Publication number: 20160186276
    Abstract: Method, apparatus and system for improved energy efficiency in a direct reduction iron production process which uses a direct reduction shaft furnace and syngas as the reduction gas. The method and system of the invention use a part of the top gas emanating from the shaft furnace as transport gas for the gasifier, and control the volume of the top gas used as recycled top gas or fuel for the gas heater. The present invention achieves high energy efficiency, and reduces the need to use additional CH4 source for the reduction gas.
    Type: Application
    Filed: December 14, 2015
    Publication date: June 30, 2016
    Inventors: John D. Winter, Haruyasu Michishita
  • Publication number: 20140311031
    Abstract: Systems and methods for step-wise cooling high pressure and high temperature ash discharged from the gasifier used for gasification of carboneous materials, wherein a high pressure cooler cools the ash under the operating pressure of the gasifier, which may be followed by a depressurizer which brings the cooled ash to safe-handling temperature. A low temperature ash cooler may also be optionally used. Also provided is a system where a wet scrubber is used to clean the syngas from the gasifier, the waste water blow down from the scrubber is used to cool the hot ash either in the high temperature ash cooler, or the low temperature ash cooler. Steam generated in the ash coolers is supplied back to the gasifier to reduce steam consumption.
    Type: Application
    Filed: March 14, 2014
    Publication date: October 23, 2014
    Inventor: John D. Winter
  • Publication number: 20140311701
    Abstract: An apparatus for cooling a gas distribution grid of fluidized bed gasifier and a method is provided in the present invention. The apparatus comprises a gas flow failure event detector for detecting a gasifying gas flow failure event, a flow control device for controlling the introduction of a flow stream of a liquid material into a spaying device placed in the plenum space of the gasifier, wherein the gas flow failure event detector is in signal connection with the flow control device, and a spaying device for spaying into the plenum space the liquid material as mist which evaporates and generates a positive pressure to cause through the gas distribution grid a flow which prevents the hot bed material from settling on the gas distribution grid.
    Type: Application
    Filed: March 14, 2014
    Publication date: October 23, 2014
    Applicant: SYNTHESIS ENERGY SYSTEMS, INC.
    Inventor: John D. Winter
  • Publication number: 20140269157
    Abstract: The present invention relates to apparatuses for fluidized bed using multiple jets to introduce gas into a fluidized bed region and methods of fluidizing. The apparatus for introducing fluidizing medium to a fluidized bed reactor comprises a vessel defining a fluidized bed region and in which solid feed stock is fed, a gas distribution grid housed in the lower portion of the vessel through which a first fluidizing medium is introduced to fluidize the solid feed stock, a plurality of jets positioned through the gas distribution grid through which a second fluidizing medium is introduced into the fluidized bed region for fluidization of the solid feed stock.
    Type: Application
    Filed: March 14, 2014
    Publication date: September 18, 2014
    Inventor: John D. Winter