Patents by Inventor John D. Yamokoski

John D. Yamokoski has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8868241
    Abstract: A system for developing distributed robot application-level software includes a robot having an associated control module which controls motion of the robot in response to a commanded task, and a robot task commander (RTC) in networked communication with the control module over a network transport layer (NTL). The RTC includes a script engine(s) and a GUI, with a processor and a centralized library of library blocks constructed from an interpretive computer programming code and having input and output connections. The GUI provides access to a Visual Programming Language (VPL) environment and a text editor. In executing a method, the VPL is opened, a task for the robot is built from the code library blocks, and data is assigned to input and output connections identifying input and output data for each block. A task sequence(s) is sent to the control module(s) over the NTL to command execution of the task.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: October 21, 2014
    Assignees: GM Global Technology Operations LLC, The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Stephen W Hart, John D. Yamokoski, Brian J Wightman, Duy Paul Dinh, Dustin R Gooding
  • Publication number: 20140277743
    Abstract: A system for developing distributed robot application-level software includes a robot having an associated control module which controls motion of the robot in response to a commanded task, and a robot task commander (RTC) in networked communication with the control module over a network transport layer (NTL). The RTC includes a script engine(s) and a GUI, with a processor and a centralized library of library blocks constructed from an interpretive computer programming code and having input and output connections. The GUI provides access to a Visual Programming Language (VPL) environment and a text editor. In executing a method, the VPL is opened, a task for the robot is built from the code library blocks, and data is assigned to input and output connections identifying input and output data for each block. A task sequence(s) is sent to the control module(s) over the NTL to command execution of the task.
    Type: Application
    Filed: March 14, 2013
    Publication date: September 18, 2014
    Applicants: The U.S.A. As Represented by the Administrator of the National Aeronautics and Space Administration, GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Stephen W. Hart, John D. Yamokoski, Brian J. Wightman, Duy Paul Dinh, Dustin R. Gooding
  • Patent number: 8483877
    Abstract: A method of controlling a robotic manipulator of a force- or impedance-controlled robot within an unstructured workspace includes imposing a saturation limit on a static force applied by the manipulator to its surrounding environment, and may include determining a contact force between the manipulator and an object in the unstructured workspace, and executing a dynamic reflex when the contact force exceeds a threshold to thereby alleviate an inertial impulse not addressed by the saturation limited static force. The method may include calculating a required reflex torque to be imparted by a joint actuator to a robotic joint. A robotic system includes a robotic manipulator having an unstructured workspace and a controller that is electrically connected to the manipulator, and which controls the manipulator using force- or impedance-based commands. The controller, which is also disclosed herein, automatically imposes the saturation limit and may execute the dynamic reflex noted above.
    Type: Grant
    Filed: September 3, 2010
    Date of Patent: July 9, 2013
    Assignees: GM Global Technology Operations LLC, The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Muhammad E. Abdallah, Brian Hargrave, John D. Yamokoski, Philip A. Strawser
  • Publication number: 20120059515
    Abstract: A method of controlling a robotic manipulator of a force- or impedance-controlled robot within an unstructured workspace includes imposing a saturation limit on a static force applied by the manipulator to its surrounding environment, and may include determining a contact force between the manipulator and an object in the unstructured workspace, and executing a dynamic reflex when the contact force exceeds a threshold to thereby alleviate an inertial impulse not addressed by the saturation limited static force. The method may include calculating a required reflex torque to be imparted by a joint actuator to a robotic joint. A robotic system includes a robotic manipulator having an unstructured workspace and a controller that is electrically connected to the manipulator, and which controls the manipulator using force- or impedance-based commands. The controller, which is also disclosed herein, automatically imposes the saturation limit and may execute the dynamic reflex noted above.
    Type: Application
    Filed: September 3, 2010
    Publication date: March 8, 2012
    Applicants: The U.S.A. As Represented by the Administrator of the National Aeronautics and Space Administration, GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: Muhammad E. Abdallah, Brian Hargrave, John D. Yamokoski, Philip A. Strawser