Patents by Inventor John Don Carlos

John Don Carlos has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7663535
    Abstract: A system is disclosed for position registration and phase synchronization of monitors in a monitor network. Each monitor includes a transceiver having a transponder circuit with a calibrated transponder delay. To measure a distance between monitors, an oscillator at a first monitor generates a measurement signal which is transponded by a second monitor for receipt by the first monitor. A phase difference between the received signal and the first monitor oscillator is determined and used with the signal velocity and transponder delay to calculate the distance between monitors. The measured distances are combined with other data (e.g. monitor elevations) to calculate monitor locations. A phase delay is then measured by transmitting a signal from the first to the second monitor for comparison with the second monitor oscillator. A phase difference between oscillators (for use in synchronizing the monitors) is then calculated using the phase delay, separation distance and signal velocity.
    Type: Grant
    Filed: July 25, 2007
    Date of Patent: February 16, 2010
    Assignee: Information Systems Laboratories, Inc.
    Inventor: John Don Carlos
  • Publication number: 20090027272
    Abstract: A system is disclosed for position registration and phase synchronization of monitors in a monitor network. Each monitor includes a transceiver having a transponder circuit with a calibrated transponder delay. To measure a distance between monitors, an oscillator at a first monitor generates a measurement signal which is transponded by a second monitor for receipt by the first monitor. A phase difference between the received signal and the first monitor oscillator is determined and used with the signal velocity and transponder delay to calculate the distance between monitors. The measured distances are combined with other data (e.g. monitor elevations) to calculate monitor locations. A phase delay is then measured by transmitting a signal from the first to the second monitor for comparison with the second monitor oscillator. A phase difference between oscillators (for use in synchronizing the monitors) is then calculated using the phase delay, separation distance and signal velocity.
    Type: Application
    Filed: July 25, 2007
    Publication date: January 29, 2009
    Inventor: John Don Carlos
  • Patent number: 6917880
    Abstract: A passive navigation system for an airborne platform includes an on-board computer having a database that contains preprogrammed information regarding pre-existing ground-based signal emitters (e.g. cell-phone, television and radio broadcast transmitters). For each emitter, the database includes the geolocation of the emitter and identifying signal characteristic(s) of each emitter's signal such as frequency, bandwidth and strength. An antenna array and digital receiver cooperate with the computer on the platform to passively receive signals from the emitters and determine a direction of arrival (DOA) for selected signals. The computer also extracts identifying signal characteristic(s) from selected received signals and matches them against the database information to ascertain the geolocation of the emitter that corresponds to the received signal. The platform location is then calculated from the DOA(s) and emitter geolocations using a triangulation-type algorithm.
    Type: Grant
    Filed: July 8, 2003
    Date of Patent: July 12, 2005
    Assignee: Information Systems Laboratories, Inc.
    Inventors: Jameson Bergin, J. Doss Halsey, John Don Carlos
  • Patent number: 6724340
    Abstract: A system and method for detecting a target object through foliage includes a transmitter for generating a low-frequency electromagnetic signal. The signal is directed toward a potential target object for reflection from the potential target object. The system further includes a plurality of mutually dispersed sensors for receiving the reflected signal from the target object. A mechanism is provided to determine the relative locations of the sensors. Signal information from the received signals is sent to a central processor. The central processor inputs the signal information into a beamformer algorithm such as the Maximum Likelihood Method (MLM) to reduce sidelobe ambiguities and resolve the true location of the target from the signal information.
    Type: Grant
    Filed: February 13, 2003
    Date of Patent: April 20, 2004
    Assignee: Information Systems Laboratories
    Inventors: John Don Carlos, David R. Kirk, Jameson Bergin, Paul M. Techau, J. Doss Halsey
  • Patent number: 6593875
    Abstract: A system and method for identifying the position of an airborne platform on a flight path includes at least three radar transceivers that are directed along respective beam paths to generate return signals. Each of the return signals respectively indicate a speed and a direction of the platform relative to points on the surface of the earth. A computer uses the return signal to establish a ground speed, an altitude and a direction of flight for the platform. This information is then used to identify the position of the platform on its flight path. Additionally, the system can include a last known position, or a site-specific radar clutter model, to establish a start point for the platform. The computer can then calculate the position of the platform relative to the start point.
    Type: Grant
    Filed: June 29, 2001
    Date of Patent: July 15, 2003
    Assignee: Information Systems Laboratories, Inc.
    Inventors: Jameson Bergin, J. Doss Halsey, John Don Carlos
  • Publication number: 20030102999
    Abstract: A system and method for identifying the position of an airborne platform on a flight path includes at least three radar transceivers that are directed along respective beam paths to generate return signals. Each of the return signals respectively indicate a speed and a direction of the platform relative to points on the surface of the earth. A computer uses the return signal to establish a ground speed, an altitude and a direction of flight for the platform. This information is then used to identify the position of the platform on its flight path. Additionally, the system can include a last known position, or a site-specific radar clutter model, to establish a start point for the platform. The computer can then calculate the position of the platform relative to the start point.
    Type: Application
    Filed: June 29, 2001
    Publication date: June 5, 2003
    Inventors: Jameson Bergin, J. Doss Halsey, John Don Carlos