Patents by Inventor John Drewery

John Drewery has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170040174
    Abstract: Systems and methods for reverse pulsing are described. One of the methods includes receiving a digital signal having a first state and a second state. The method further includes generating a transformer coupled plasma (TCP) radio frequency (RF) pulsed signal having a high state when the digital signal is in the first state and having a low state when the digital signal is in the second state. The method includes providing the TCP RF pulsed signal to one or more coils of a plasma chamber, generating a bias RF pulsed signal having a low state when the digital signal is in the first state and having a high state when the digital signal is in the second state, and providing the bias RF pulsed signal to a chuck of the plasma chamber.
    Type: Application
    Filed: September 23, 2015
    Publication date: February 9, 2017
    Inventors: Maolin Long, Zhongkui Tan, Ying Wu, Qian Fu, Alex Paterson, John Drewery
  • Publication number: 20170032982
    Abstract: A gas delivery system for a substrate processing system includes a first manifold and a second manifold. A gas delivery sub-system selectively delivers gases from gas sources. The gas delivery sub-system delivers a first gas mixture to the first manifold and a second gas mixture. A gas splitter includes an inlet in fluid communication with an outlet of the second manifold, a first outlet in fluid communication with an outlet of the first manifold, and a second outlet. The gas splitter splits the second gas mixture into a first portion at a first flow rate that is output to the first outlet and a second portion at a second flow rate that is output to the second outlet. First and second zones of the substrate processing system are in fluid communication with the first and second outlets of the gas splitter, respectively.
    Type: Application
    Filed: November 19, 2015
    Publication date: February 2, 2017
    Inventors: John Drewery, Yoshie Kimura, James Adams, Yoko Yamaguchi Adams, Tony Zemlock
  • Publication number: 20170031370
    Abstract: A gas delivery system delivers different process gas compositions to a common supply line at specified times. Multiple reservoirs are fluidly connected to the common supply line with each reservoir having its own charge control valve for controlling connection of the reservoir to the common supply line. Each of the multiple reservoirs has a corresponding mass flow controller and delivery control valve connected to control flow of process gas from within the reservoir to a process module at specified times. The common supply line is operated to fill the multiple reservoirs with different process gas compositions in a time-divided manner. The mass flow controllers and delivery control valves of the multiple reservoirs are operated to deliver one or more process gas compositions to the process module in an accurately timed manner in accordance with a prescribed schedule. The multiple reservoirs are filled as needed to satisfy the prescribed schedule.
    Type: Application
    Filed: August 21, 2015
    Publication date: February 2, 2017
    Inventor: John Drewery
  • Publication number: 20160358755
    Abstract: A voltage sensor of a substrate processing system including a multi-divider circuit, a clamping circuit and first and second outputs. The multi-divider circuit receives a RF signal indicative of a RF voltage at a substrate. The multi-divider circuit includes dividers of respective channels and outputting first and second reduced voltages based on the received RF signal. The reduced voltages are less than the RF voltage. The clamping circuit clamps the first reduced voltage to a first predetermined voltage when the RF voltage is greater than a second predetermined voltage or the first reduced voltage is greater than a third predetermined voltage. While the received RF signal is in first and second voltage ranges, the first and second outputs output output signals based respectively on the first and second reduced voltages. The first predetermined voltage is based on a maximum value of the first voltage range.
    Type: Application
    Filed: June 2, 2015
    Publication date: December 8, 2016
    Inventors: Maolin Long, John Drewery, Alex Paterson
  • Patent number: 9490106
    Abstract: Plasma processing chambers having internal Faraday shields with defined groove configurations, are defined. In one example, the chamber includes an electrostatic chuck for receiving a substrate and a dielectric window connected to a top portion of the chamber, where the dielectric window disposed over the electrostatic chuck. Also included is a Faraday shield disposed inside of the chamber and defined between the electrostatic chuck and the dielectric window. The Faraday shield includes an inner zone having an inner radius range, a middle zone having a middle radius range, an outer zone having an outer radius range, where the inner zone is adjacent to the middle zone, and the middle zone being adjacent to the outer zone.
    Type: Grant
    Filed: August 4, 2011
    Date of Patent: November 8, 2016
    Assignee: Lam Research Corporation
    Inventors: John Drewery, Maolin Long, Alex Paterson
  • Publication number: 20160163569
    Abstract: A Faraday shield and a plasma processing chamber incorporating the Faraday shield is are provided. The plasma chamber includes an electrostatic chuck for receiving a substrate, a dielectric window connected to a top portion of the chamber, the dielectric window disposed over the electrostatic chuck, and a Faraday shield. The Faraday shield is disposed inside of the chamber and defined between the electrostatic chuck and the dielectric window. The Faraday shield includes an inner zone having an inner radius range that includes a first and second plurality of slots and an outer zone having an outer radius range that includes a third plurality of slots. The inner zone is adjacent to the outer zone. The Faraday shield also includes a band ring separating the inner zone and the outer zone, such that the first and second plurality of slots do not connect with the third plurality of slots.
    Type: Application
    Filed: February 11, 2016
    Publication date: June 9, 2016
    Inventors: Maolin Long, Alex Paterson, Ricky Marsh, Ying Wu, John Drewery
  • Patent number: 9336901
    Abstract: A system and method of providing feedback control to a pulsed RF generator includes an RF generator having an RF output and a feedback input. An RF electrode is coupled to the RF output and an RF sampling circuit having a sampling input coupled to the RF electrode. The sampling circuit including a feedback signal output coupled to the feedback input of the RF generator. A method of providing feedback control to a pulse RF generator includes receiving an RF sample of an RF pulse, sampling the RF sample multiple sampling times to produce multiple feedback levels during the duration of the RF pulse and coupling the multiple feedback levels to a feedback input on an RF generator, the RF generator outputting the RF pulse.
    Type: Grant
    Filed: March 17, 2014
    Date of Patent: May 10, 2016
    Assignee: Lam Research Corporation
    Inventor: John Drewery
  • Patent number: 9293353
    Abstract: A Faraday shield and a plasma processing chamber incorporating the Faraday shield is are provided. The plasma chamber includes an electrostatic chuck for receiving a substrate, a dielectric window connected to a top portion of the chamber, the dielectric window disposed over the electrostatic chuck, and a Faraday shield. The Faraday shield is disposed inside of the chamber and defined between the electrostatic chuck and the dielectric window. The Faraday shield includes an inner zone having an inner radius range that includes a first and second plurality of slots and an outer zone having an outer radius range that includes a third plurality of slots. The inner zone is adjacent to the outer zone. The Faraday shield also includes a band ring separating the inner zone and the outer zone, such that the first and second plurality of slots do not connect with the third plurality of slots.
    Type: Grant
    Filed: October 23, 2012
    Date of Patent: March 22, 2016
    Assignee: Lam Research Corporation
    Inventors: Maolin Long, Alex Paterson, Ricky Marsh, Ying Wu, John Drewery
  • Publication number: 20150262704
    Abstract: A system and method of providing feedback control to a pulsed RF generator includes an RF generator having an RF output and a feedback input. An RF electrode is coupled to the RF output and an RF sampling circuit having a sampling input coupled to the RF electrode. The sampling circuit including a feedback signal output coupled to the feedback input of the RF generator. A method of providing feedback control to a pulse RF generator includes receiving an RF sample of an RF pulse, sampling the RF sample multiple sampling times to produce multiple feedback levels during the duration of the RF pulse and coupling the multiple feedback levels to a feedback input on an RF generator, the RF generator outputting the RF pulse.
    Type: Application
    Filed: March 17, 2014
    Publication date: September 17, 2015
    Applicant: Lam Research Corporation
    Inventor: John Drewery
  • Patent number: 9076831
    Abstract: An electrostatic chuck includes an electrically conductive baseplate and an electrically non-conductive substrate support member disposed on the baseplate. First and second sets of clamp electrodes are disposed within the support member. A power supply system includes a clamp power supply, a center tap power supply, and a baseplate power supply. The clamp power supply generates a positive output voltage and a negative output voltage, each of which is equidistant from a center tap voltage. The positive output voltage is electrically connected to the first set of clamp electrodes. The negative output voltage is electrically connected to the second set of clamp electrodes. The center tap power supply is defined to control the center tap voltage of the clamp power supply. The baseplate power supply is defined to generate a baseplate output voltage independent from the center tap voltage. The baseplate output voltage is electrically connected to the baseplate.
    Type: Grant
    Filed: March 1, 2012
    Date of Patent: July 7, 2015
    Assignee: Lam Research Corporation
    Inventor: John Drewery
  • Publication number: 20150020969
    Abstract: A processing chamber and a Faraday shield system for use in a plasma processing chambers are provided. One system includes a disk structure defining a Faraday shield, and the disk structure has a process side and a back side. The disk structure extends between a center region to a periphery region. The disk structure resides within the processing volume. The system also includes a hub having an internal plenum for passing a flow of air received from an input conduit and removing the flow of air from an output conduit. The hub has an interface surface that is coupled to the back side of the disk structure at the center region. A fluid delivery control is coupled to the input conduit of the hub. The fluid delivery control is configured with a flow rate regulator. The regulated air can be amplified or compressed dry air (CDA).
    Type: Application
    Filed: August 23, 2013
    Publication date: January 22, 2015
    Inventors: Saravanapriyan Sriraman, John Drewery, Jon McChesney, Alex Paterson
  • Publication number: 20140302689
    Abstract: Methods for depositing flowable dielectric films are provided. In some embodiments, the methods involve introducing a silicon-containing precursor to a deposition chamber wherein the precursor is characterized by having a partial pressure:vapor pressure ratio between 0.01 and 1. In some embodiments, the methods involve depositing a high density plasma dielectric film on a flowable dielectric film. The high density plasma dielectric film may fill a gap on a substrate. Also provided are apparatuses for performing the methods.
    Type: Application
    Filed: April 9, 2014
    Publication date: October 9, 2014
    Applicant: Novellus Systems, Inc.
    Inventors: Kaihan Ashtiani, Michael Wood, John Drewery, Naohiro Shoda, Bart van Schravendijk, Lakshminarayana Nittala, Nerissa Draeger
  • Patent number: 8728958
    Abstract: Novel gap fill schemes involving depositing both flowable oxide films and high density plasma chemical vapor deposition oxide (HDP oxide) films are provided. According to various embodiments, the flowable oxide films may be used as a sacrificial layer and/or as a material for bottom up gap fill. In certain embodiments, the top surface of the filled gap is an HDP oxide film. The resulting filled gap may be filled only with HDP oxide film or a combination of HDP oxide and flowable oxide films. The methods provide improved top hat reduction and avoid clipping of the structures defining the gaps.
    Type: Grant
    Filed: December 9, 2010
    Date of Patent: May 20, 2014
    Assignee: Novellus Systems, Inc.
    Inventors: Kaihan Ashtiani, Michael Wood, John Drewery, Naohiro Shoda, Bart van Schravendijk, Lakshminarayana Nittala, Nerissa Draeger
  • Publication number: 20130186568
    Abstract: A Faraday shield and a plasma processing chamber incorporating the Faraday shield is are provided. The plasma chamber includes an electrostatic chuck for receiving a substrate, a dielectric window connected to a top portion of the chamber, the dielectric window disposed over the electrostatic chuck, and a Faraday shield. The Faraday shield is disposed inside of the chamber and defined between the electrostatic chuck and the dielectric window. The Faraday shield includes an inner zone having an inner radius range that includes a first and second plurality of slots and an outer zone having an outer radius range that includes a third plurality of slots. The inner zone is adjacent to the outer zone. The Faraday shield also includes a band ring separating the inner zone and the outer zone, such that the first and second plurality of slots do not connect with the third plurality of slots.
    Type: Application
    Filed: October 23, 2012
    Publication date: July 25, 2013
    Inventors: Maolin Long, Alex Paterson, Ricky Marsh, Ying Wu, John Drewery
  • Publication number: 20130114181
    Abstract: An electrostatic chuck includes an electrically conductive baseplate and an electrically non-conductive substrate support member disposed on the baseplate. First and second sets of clamp electrodes are disposed within the support member. A power supply system includes a clamp power supply, a center tap power supply, and a baseplate power supply. The clamp power supply generates a positive output voltage and a negative output voltage, each of which is equidistant from a center tap voltage. The positive output voltage is electrically connected to the first set of clamp electrodes. The negative output voltage is electrically connected to the second set of clamp electrodes. The center tap power supply is defined to control the center tap voltage of the clamp power supply. The baseplate power supply is defined to generate a baseplate output voltage independent from the center tap voltage. The baseplate output voltage is electrically connected to the baseplate.
    Type: Application
    Filed: March 1, 2012
    Publication date: May 9, 2013
    Applicant: Lam Research Corporation
    Inventor: John Drewery
  • Publication number: 20120273130
    Abstract: Plasma processing chambers having internal Faraday shields with defined groove configurations, are defined. In one example, the chamber includes an electrostatic chuck for receiving a substrate and a dielectric window connected to a top portion of the chamber, where the dielectric window disposed over the electrostatic chuck. Also included is a Faraday shield disposed inside of the chamber and defined between the electrostatic chuck and the dielectric window. The Faraday shield includes an inner zone having an inner radius range, a middle zone having a middle radius range, an outer zone having an outer radius range, where the inner zone is adjacent to the middle zone, and the middle zone being adjacent to the outer zone.
    Type: Application
    Filed: August 4, 2011
    Publication date: November 1, 2012
    Inventors: John Drewery, Maolin Long, Alex Paterson
  • Publication number: 20110151678
    Abstract: Novel gap fill schemes involving depositing both flowable oxide films and high density plasma chemical vapor deposition oxide (HDP oxide) films are provided. According to various embodiments, the flowable oxide films may be used as a sacrificial layer and/or as a material for bottom up gap fill. In certain embodiments, the top surface of the filled gap is an HDP oxide film. The resulting filled gap may be filled only with HDP oxide film or a combination of HDP oxide and flowable oxide films. The methods provide improved top hat reduction and avoid clipping of the structures defining the gaps.
    Type: Application
    Filed: December 9, 2010
    Publication date: June 23, 2011
    Inventors: Kaihan Ashtiani, Michael Wood, John Drewery, Naohiro Shoda, Bart van Schravendijk, Lakshminarayana Nittala, Nerissa Draeger
  • Patent number: 7799200
    Abstract: Methods and apparatus are provided for planar metal plating on a workpiece having a surface with recessed regions and exposed surface regions; comprising the steps of: causing a plating accelerator to become attached to said surface including the recessed and exposed surface regions; selectively removing the plating accelerator from the exposed surface regions without performing substantial metal plating on the surface; and after removal of plating accelerator is at least partially complete, plating metal onto the surface, whereby the plating accelerator remaining attached to the surface increases the rate of metal plating in the recessed regions relative to the rate of metal plating in the exposed surface regions.
    Type: Grant
    Filed: October 5, 2006
    Date of Patent: September 21, 2010
    Assignee: Novellus Systems, Inc.
    Inventors: Steven T. Mayer, John Drewery, Richard S. Hill, Timothy Archer, Avishai Kepten
  • Patent number: 7695597
    Abstract: A conductive planarization assembly for use in electrochemical mechanical planarization is provided. A conductive planarization assembly in accordance with an exemplary embodiment of the invention comprises a first insulating member and a second insulating member overlying the first insulating member and having a plurality of first holes. A conductive member is interposed between the first insulating member and the second insulating member and is electrically coupled to an external circuit. The conductive member comprises a plurality of cathode regions that are exposed by the plurality of first holes of the second insulating member.
    Type: Grant
    Filed: March 29, 2006
    Date of Patent: April 13, 2010
    Assignee: Novellus Systems, Inc.
    Inventors: John Drewery, Francisco Juarez, Henner Meinhold
  • Patent number: 7456101
    Abstract: Methods for depositing a ruthenium metal layer on a dielectric substrate are provided. The methods involve, for instance, exposing the dielectric substrate to an amine-containing compound, followed by exposing the substrate to a ruthenium precursor and an optional co-reactant such that the amine-containing compound facilitates the nucleation on the dielectric surface.
    Type: Grant
    Filed: March 13, 2007
    Date of Patent: November 25, 2008
    Assignee: Novellus Systems, Inc.
    Inventors: Sanjay Gopinath, Jeremie Dalton, Jason M. Blackburn, John Drewery, Willibrordus Gerardus Maria van den Hoek