Patents by Inventor John E. Ashley

John E. Ashley has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9920474
    Abstract: A fiber blend, a yarn spun from the fiber blend, and a fabric made from the yarn, wherein the fiber blend is a blend of staple fibers comprising non-FR cellulosic fibers, modacrylic fibers, and aramid fibers intimately blended together. The blend is such that the cellulosic fibers constitute at least about 45 wt. % of the fiber blend, a weight ratio of the modacrylic fibers to the cellulosic fibers is at least 0.8 but not exceeding 1.0, and the aramid fibers make up no more than 15 wt. % of the fiber blend.
    Type: Grant
    Filed: March 13, 2013
    Date of Patent: March 20, 2018
    Assignee: Milliken & Company
    Inventors: Quentin Robert Bonner, Rachel W. Boyette, John E. Ashley
  • Publication number: 20180064557
    Abstract: A selectively expanding spine cage has a minimized cross section in its unexpanded state that is smaller than the diameter of the neuroforamen through which it passes in the distracted spine. The cage conformably engages between the endplates of the adjacent vertebrae to effectively distract the anterior disc space, stabilize the motion segments and eliminate pathologic spine motion. Expanding selectively (anteriorly, along the vertical axis of the spine) rather than uniformly, the cage height increases and holds the vertebrae with fixation forces greater than adjacent bone and soft tissue failure forces in natural lordosis. Stability is thus achieved immediately, enabling patient function by eliminating painful motion. The cage shape intends to rest proximate to the anterior column cortices securing the desired spread and fixation, allowing for bone graft in, around, and through the implant for arthrodesis whereas for arthroplasty it fixes to endpoints but cushions the spine naturally.
    Type: Application
    Filed: November 9, 2017
    Publication date: March 8, 2018
    Inventors: Damien J. Shulock, John E. Ashley, Thomas Grotz, Rudy Pretti
  • Publication number: 20170362749
    Abstract: A woven flame-resistant fabric for garments, the warp and fill yarns being made up of at least about 30 wt. % inherently flame-resistant fibers. The fabric is woven from a plurality of warp yarn groups consecutively arranged across the width direction in a recurring pattern, each warp yarn group consisting of a plurality of adjacent consecutively arranged warp yarns. At least one warp yarn in each warp yarn group is woven with the fill yarns in a plain (1/1) weave and at least one warp yarn in each warp yarn group is woven in one or more non-plain weaves each selected from the group consisting of 1/2, 2/1, 2/2, 1/3, and 3/1. Approximately half of the warp yarns in the fabric are woven in a plain (1/1) weave and the remaining warp yarns in the fabric are woven in the one or more non-plain weaves, in an alternating fashion.
    Type: Application
    Filed: August 31, 2017
    Publication date: December 21, 2017
    Inventors: Ansel L. Smith, John E. Ashley, Rachel W. Boyette
  • Patent number: 9814600
    Abstract: A selectively expanding spine cage has a minimized cross section in its unexpanded state that is smaller than the diameter of the neuroforamen through which it passes in the distracted spine. The cage conformably engages between the endplates of the adjacent vertebrae to effectively distract the anterior disc space, stabilize the motion segments and eliminate pathologic spine motion. Expanding selectively (anteriorly, along the vertical axis of the spine) rather than uniformly, the cage height increases and holds the vertebrae with fixation forces greater than adjacent bone and soft tissue failure forces in natural lordosis. Stability is thus achieved immediately, enabling patient function by eliminating painful motion. The cage shape intends to rest proximate to the anterior column cortices securing the desired spread and fixation, allowing for bone graft in, around, and through the implant for arthrodesis whereas for arthroplasty it fixes to endpoints but cushions the spine naturally.
    Type: Grant
    Filed: April 17, 2015
    Date of Patent: November 14, 2017
    Assignee: Howmedica Osteonics Corp.
    Inventors: Damien J. Shulock, John E. Ashley, Thomas Grotz, Rudy Pretti
  • Publication number: 20170224506
    Abstract: A spinal implant which is configured to be deployed between adjacent vertebral bodies. The implant has at least one extendable support element with a retracted configuration to facilitate deployment of the implant and an extended configuration so as to expand the implant and effectively distract the disc space, stabilize the motion segments and eliminate pathologic spine motion. The implant has a minimal dimension in its unexpanded state that is smaller than the dimensions of the neuroforamen through which it typically passes to be deployed within the intervertebral space. The implant is provided with a locking system having a plurality of linked locking elements that work in unison to lock the implant in an extended configuration. Bone engaging anchors also may be provided to ensure secure positioning.
    Type: Application
    Filed: December 13, 2016
    Publication date: August 10, 2017
    Inventors: John E. Ashley, Philip J. Simpson, Walter Dean Gillespie, Damien J. Shulock, Murali Kadaba, David G. Matsuura, George A. Mansfield, III, Thomas Grotz, Rudy Pretti, Dennis Crandall
  • Patent number: 9545316
    Abstract: A spinal implant which is configured to be deployed between adjacent vertebral bodies. The implant has at least one extendable support element with a retracted configuration to facilitate deployment of the implant and an extended configuration so as to expand the implant and effectively distract the disc space, stabilize the motion segments and eliminate pathologic spine motion. The implant has a minimal dimension in its unexpanded state that is smaller than the dimensions of the neuroforamen through which it typically passes to be deployed within the intervertebral space. The implant is provided with a locking system having a plurality of linked locking elements that work in unison to lock the implant in an extended configuration. Bone engaging anchors also may be provided to ensure secure positioning.
    Type: Grant
    Filed: March 11, 2015
    Date of Patent: January 17, 2017
    Assignee: Howmedica Osteonics Corp.
    Inventors: John E. Ashley, Philip J. Simpson, Walter Dean Gillespie, Damien Shulock, Murali Kadaba, David G. Matsuura, George A. Mansfield, III, Thomas Grotz, Rudy Pretti, Dennis Crandall
  • Patent number: 9456829
    Abstract: A device for modifying tissue in a spine may include: a shaft having a proximal portion and a distal portion, the distal portion having dimensions which allow it to be passed into an epidural space of the spine and between target and non-target tissues; at least one distal force application member extending from the distal portion of the shaft and configured to facilitate application of at least one of anchoring force and tensioning force to the shaft; at least one movable tissue modifying member coupled with the shaft at or near its distal portion; at least one drive member coupled with the at least one tissue modifying member to activate the at least one tissue modifying member; and at least one power transmission member coupled with the at least one drive member to deliver power to the at least one drive member.
    Type: Grant
    Filed: June 10, 2013
    Date of Patent: October 4, 2016
    Assignee: Amendia, Inc.
    Inventors: Vahid Saadat, Jeffery L. Bleich, Kenneth J. Michlitsch, John E. Ashley
  • Publication number: 20160271312
    Abstract: Systems and methods of disinfection of catheter connections are provided. A transfer catheter connector can include a UV-transparent window at its distal end and a sealing plunger proximal to the UV-transparent window. A solution set connector can be inserted inside a portion of the transfer catheter connector to connect a solution set and transfer catheter. The solution set connector comprises a lumen covered by a leading membrane surface; a sealing surface configured to sealingly engage the window surface, and a piercing member configured to pierce the membrane surface. The sealing plunger, membrane surface, and window define a disinfection zone. The connectors can be connected in a disinfection position configuration in which flow is not permitted between the catheters and the connectors are irradiated with UV light. After disinfection, the connectors are advanced to a flow position in which the piercing member pierces the membrane surface, enabling flow between the catheters.
    Type: Application
    Filed: March 18, 2016
    Publication date: September 22, 2016
    Inventors: Justin A. LANCE, Stephen BOWER, John E. ASHLEY, Jeffrey ETTER, Julia A. RASOOLY, Michael RASOOLY, Benjamin S. ARNETT
  • Publication number: 20150289988
    Abstract: A spinal implant which is configured to be deployed between adjacent vertebral bodies. The implant has at least one extendable support element with a retracted configuration to facilitate deployment of the implant and an extended configuration so as to expand the implant and effectively distract the disc space, stabilize the motion segments and eliminate pathologic spine motion. The implant has a minimal dimension in its unexpanded state that is smaller than the dimensions of the neuroforamen through which it typically passes to be deployed within the intervertebral space. The implant is provided with a locking system having a plurality of linked locking elements that work in unison to lock the implant in an extended configuration. Bone engaging anchors also may be provided to ensure secure positioning.
    Type: Application
    Filed: March 11, 2015
    Publication date: October 15, 2015
    Inventors: John E. Ashley, Philip J. Simpson, Walter Dean Gillespie, Damien Shulock, Murali Kadaba, David G. Matsuura, George A. Mansfield, III, Thomas Grotz, Rudy Pretti, Dennis Crandall
  • Publication number: 20150265415
    Abstract: Prosthetic intervertebral discs, systems including such prosthetic intervertebral discs, and methods for using the same are described. The subject prosthetic discs include upper and lower endplates separated by a compressible core member. The subject prosthetic discs exhibit stiffness in the vertical direction, torsional stiffness, bending stiffness in the saggital plane, and bending stiffness in the front plane, where the degree of these features can be controlled independently by adjusting the components, construction, and other features of the discs.
    Type: Application
    Filed: March 19, 2014
    Publication date: September 24, 2015
    Inventors: Darin C. Gittings, Michael L. Reo, Janine C. Robinson, John E. Ashley, Nicholas C. Koske, Roxanne L. Richman, Elizabeth V. Wistrom, Uriel Hiram Chee
  • Publication number: 20150216676
    Abstract: A selectively expanding spine cage has a minimized cross section in its unexpanded state that is smaller than the diameter of the neuroforamen through which it passes in the distracted spine. The cage conformably engages between the endplates of the adjacent vertebrae to effectively distract the anterior disc space, stabilize the motion segments and eliminate pathologic spine motion. Expanding selectively (anteriorly, along the vertical axis of the spine) rather than uniformly, the cage height increases and holds the vertebrae with fixation forces greater than adjacent bone and soft tissue failure forces in natural lordosis. Stability is thus achieved immediately, enabling patient function by eliminating painful motion. The cage shape intends to rest proximate to the anterior column cortices securing the desired spread and fixation, allowing for bone graft in, around, and through the implant for arthrodesis whereas for arthroplasty it fixes to endpoints but cushions the spine naturally.
    Type: Application
    Filed: April 17, 2015
    Publication date: August 6, 2015
    Inventors: Damien J. Shulock, John E. Ashley, Thomas Grotz, Rudy Pretti
  • Publication number: 20150202054
    Abstract: An insertion handle for medical implants includes a handle with an elongate shaft extending therefrom and connection means for the implant disposed at the end of the shaft opposite the handle. The connection means includes a pivotable attachment for the implant that is controlled remotely from the handle. Both angle of the implant with respect to the handle and shaft as well as the attachment may be separately controlled and adjusted. Remote angular adjustment facilitates insertion of implants in to small surgical sites because the orientation of the implant may be repeatedly, remotely adjusted as the implant is inserted. Connectors may also be provided at the engagement surface between the handle and implant in order to provide communication with the implant or surgical site. The connectors also may serve as torque bearing members to avoid the need for separate torque bearing means such as keyways and the like.
    Type: Application
    Filed: March 12, 2015
    Publication date: July 23, 2015
    Inventors: Philip J. Simpson, George A. Mansfield, III, Damien Shulock, David G. Matsuura, Walter Dean Gillespie, John E. Ashley
  • Patent number: 9028550
    Abstract: A selectively expanding spine cage has a minimized cross section in its unexpanded state that is smaller than the diameter of the neuroforamen through which it passes in the distracted spine. The cage conformably engages between the endplates of the adjacent vertebrae to effectively distract the anterior disc space, stabilize the motion segments and eliminate pathologic spine motion. Expanding selectively (anteriorly, along the vertical axis of the spine) rather than uniformly, the cage height increases and holds the vertebrae with fixation forces greater than adjacent bone and soft tissue failure forces in natural lordosis. Stability is thus achieved immediately, enabling patient function by eliminating painful motion. The cage shape intends to rest proximate to the anterior column cortices securing the desired spread and fixation, allowing for bone graft in, around, and through the implant for arthrodesis whereas for arthroplasty it fixes to endpoints but cushions the spine naturally.
    Type: Grant
    Filed: March 13, 2013
    Date of Patent: May 12, 2015
    Assignee: CoAlign Innovations, Inc.
    Inventors: Damien J. Shulock, John E. Ashley, Thomas Grotz, Rudy Pretti
  • Patent number: 8998924
    Abstract: An insertion handle for medical implants includes a handle with an elongate shaft extending therefrom and connection means for the implant disposed at the end of the shaft opposite the handle. The connection means includes a pivotable attachment for the implant that is controlled remotely from the handle. Both angle of the implant with respect to the handle and shaft as well as the attachment may be separately controlled and adjusted. Remote angular adjustment facilitates insertion of implants in to small surgical sites because the orientation of the implant may be repeatedly, remotely adjusted as the implant is inserted. Connectors may also be provided at the engagement surface between the handle and implant in order to provide communication with the implant or surgical site. The connectors also may serve as torque bearing members to avoid the need for separate torque bearing means such as keyways and the like.
    Type: Grant
    Filed: April 15, 2010
    Date of Patent: April 7, 2015
    Assignee: CoAlign Innovations, Inc.
    Inventors: Philip J. Simpson, George A. Mansfield, Damien J. Shulock, David G. Matsuura, Walter Dean Gillespie, John E. Ashley
  • Patent number: 8992620
    Abstract: A spinal implant which is configured to be deployed between adjacent vertebral bodies. The implant has at least one extendable support element with a retracted configuration to facilitate deployment of the implant and an extended configuration so as to expand the implant and effectively distract the disc space, stabilize the motion segments and eliminate pathologic spine motion. The implant has a minimal dimension in its unexpanded state that is smaller than the dimensions of the neuroforamen through which it typically passes to be deployed within the intervertebral space. The implant is provided with a locking system having a plurality of linked locking elements that work in unison to lock the implant in an extended configuration. Bone engaging anchors also may be provided to ensure secure positioning.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: March 31, 2015
    Assignee: CoAlign Innovations, Inc.
    Inventors: John E. Ashley, Philip J. Simpson, Walter Dean Gillespie, Damien J. Shulock, Murali Kadaba, David G. Matsuura, George A. Mansfield, III, Thomas Grotz, Rudy Pretti, Dennis Crandall
  • Patent number: 8956413
    Abstract: A spinal implant which is configured to be deployed between adjacent vertebral bodies. The implant has at least one extendable support element with a retracted configuration to facilitate deployment of the implant and an extended configuration so as to expand the implant and effectively distract the disc space, stabilize the motion segments and eliminate pathologic spine motion. Angular deformities can also be corrected, and natural curvatures restored. Preferably, the implant has a minimal dimension in its unexpanded state that is smaller than the dimensions of the neuroforamen through which it typically passes to be deployed within the intervertebral space. The implant is provided with a locking system preferably having a plurality of locking elements to lock the implant in an extended configuration. Bone engaging anchors also may be provided to ensure secure positioning.
    Type: Grant
    Filed: April 8, 2013
    Date of Patent: February 17, 2015
    Assignee: CoAlign Innovations, Inc.
    Inventors: John E. Ashley, Murali Kadaba, Philip J. Simpson, Walter Dean Gillespie, Thomas Grotz, George A. Mansfield, III, David G. Matsuura, Rudy Pretti
  • Patent number: 8894710
    Abstract: A spinal implant which is configured to be deployed between adjacent vertebral bodies. The implant has at least one extendable support element with a retracted configuration to facilitate deployment of the implant and an extended configuration so as to expand the implant and effectively distract the disc space, stabilize the motion segments and eliminate pathologic spine motion. Angular deformities can also be corrected, and natural curvatures restored. Preferably, the implant has a minimal dimension in its unexpanded state that is smaller than the dimensions of the neuroforamen through which it typically passes to be deployed within the intervertebral space. The implant is provided with a locking system preferably having a plurality of locking elements to lock the implant in an extended configuration.
    Type: Grant
    Filed: June 1, 2012
    Date of Patent: November 25, 2014
    Assignee: CoAlign Innovations, Inc.
    Inventors: Philip J. Simpson, David G. Matsuura, Walter Dean Gillespie, George A. Mansfield, III, John E. Ashley
  • Publication number: 20140261852
    Abstract: A fiber blend, a yarn spun from the fiber blend, and a fabric made from the yarn, wherein the fiber blend is a blend of staple fibers comprising non-FR cellulosic fibers, modacrylic fibers, and aramid fibers intimately blended together. The blend is such that the cellulosic fibers constitute at least about 45 wt. % of the fiber blend, a weight ratio of the modacrylic fibers to the cellulosic fibers is at least 0.8 but not exceeding 1.0, and the aramid fibers make up no more than 15 wt. % of the fiber blend.
    Type: Application
    Filed: March 13, 2013
    Publication date: September 18, 2014
    Inventors: Quentin Robert Bonner, Rachel W. Boyette, John E. Ashley
  • Patent number: 8696751
    Abstract: A spinal implant which is configured to be deployed between adjacent vertebral bodies. The implant has at least one extendable support element with a refracted configuration to facilitate deployment of the implant and an extended configuration so as to expand the implant and effectively distract the disc space, stabilize the motion segments and eliminate pathologic spine motion. The implant has a minimal dimension in its unexpanded state that is smaller than the dimensions of the neuroforamen through which it typically passes to be deployed within the intervertebral space. The implant is provided with a locking system having a plurality of linked locking elements that work in unison to lock the implant in an extended configuration. Bone engaging anchors also may be provided to ensure secure positioning.
    Type: Grant
    Filed: May 25, 2010
    Date of Patent: April 15, 2014
    Assignee: CoAlign Innovations, Inc.
    Inventors: John E. Ashley, Philip J. Simpson, Walter Dean Gillespie, Damien J. Shulock, Murali Kadaba, David G. Matsuura, George A. Mansfield, III, Thomas Grotz, Rudy Pretti
  • Publication number: 20130310837
    Abstract: A device for modifying tissue in a spine may include: a shaft having a proximal portion and a distal portion, the distal portion having dimensions which allow it to be passed into an epidural space of the spine and between target and non-target tissues; at least one distal force application member extending from the distal portion of the shaft and configured to facilitate application of at least one of anchoring force and tensioning force to the shaft; at least one movable tissue modifying member coupled with the shaft at or near its distal portion; at least one drive member coupled with the at least one tissue modifying member to activate the at least one tissue modifying member; and at least one power transmission member coupled with the at least one drive member to deliver power to the at least one drive member.
    Type: Application
    Filed: June 10, 2013
    Publication date: November 21, 2013
    Inventors: Vahid SAADAT, Jeffery L. BLEICH, Kenneth J. MICHLITSCH, John E. ASHLEY