Patents by Inventor John E. Brady

John E. Brady has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11963691
    Abstract: A surgical instrument, has an end effector that includes an ultrasonic blade, and a clamp arm that moves relative to the ultrasonic blade from an opened position toward an intermediate position and a closed position. The clamp arm is offset from the ultrasonic blade to define a predetermined gap in the intermediate position between the opened position and the closed position. A clamp arm actuator connects to the clamp arm and moves from an opened configuration to a closed configuration to direct the clamp arm from the opened position toward the intermediate position and the closed position. A spacer connects with the clamp arm to inhibit movement of the clamp arm from the intermediate position toward the closed position for maintaining the predetermined gap between the clamp arm and the ultrasonic blade.
    Type: Grant
    Filed: December 21, 2020
    Date of Patent: April 23, 2024
    Assignee: Cilag GmbH International
    Inventors: Ryan M. Asher, Brian D. Black, John E. Brady, Joseph Dennis, Geni M. Giannotti, Bryce L. Heitman, Timothy S. Holland, Joseph E. Hollo, Andrew Kolpitcke, Amy M. Krumm, Jason R. Lesko, Matthew C. Miller, David A. Monroe, Ion V. Nicolaescu, Rafael J. Ruiz Ortiz, Matthew S. Schneider, Richard C. Smith, Shawn C. Snyder, Sarah A. Worthington, Monica L. Rivard, Fajian Zhang
  • Patent number: 11944366
    Abstract: An end-effector is disclosed including an ultrasonic blade configured to acoustically couple to an ultrasonic transducer and electrically couple to a pole of an electrical generator and a clamp arm including a clamp jaw and a cantilever electrode fixed to the clamp jaw. The cantilever electrode is configured to electrically couple to an opposite pole of the electrical generator. The clamp arm may include an I-beam shaped clamp arm pad and the cantilever electrode is disposed between the I-beam. The clamp jaw, the cantilever electrode, and the clamp arm pad may define recesses along a length coinciding with the ultrasonic blade. The clamp arm pad may be fixed to the clamp jaw and disposed between the clamp jaw and the cantilever electrode and may extend beyond the surface of the cantilever electrode. The clamp arm may include a stationary gap setting pad and movable floating gap setting pads.
    Type: Grant
    Filed: May 29, 2020
    Date of Patent: April 2, 2024
    Assignee: Cilag GmbH International
    Inventors: Craig N. Faller, Richard W. Flaker, Nina Mastroianni, John E. Brady, Frederick E. Shelton, IV, Jeffrey D. Messerly
  • Patent number: 11937863
    Abstract: An end-effector is disclosed. The end-effector includes a clamp arm and an ultrasonic blade configured to acoustically couple to an ultrasonic transducer and to electrically couple to a pole of an electrical generator. The clamp arm includes a clamp jaw, a plurality of variable longitudinal support elements, and a cantilever electrode configured to electrically couple to an opposite pole of the electrical generator, the cantilever electrode fixed to the clamp jaw at a proximal end and free to deflect at a distal end. The cantilever electrode is supported by the variable longitudinal support elements. The variable longitudinal support elements apply a variable force on the cantilever electrode from the proximal end to the distal end.
    Type: Grant
    Filed: May 29, 2020
    Date of Patent: March 26, 2024
    Assignee: Cilag GmbH International
    Inventors: Jeffrey D. Messerly, Frederick E. Shelton, IV, Stephen M. Leuck, Nina Mastroianni, John E. Brady, Wei Guo
  • Patent number: 11903605
    Abstract: An ultrasonic surgical instrument and method of assembly with a predetermined alignment includes first and second modular assemblies and an electrical lockout. The first modular assembly includes at least a portion of an end effector configured to manipulate a tissue. The second modular assembly includes a transducer power circuit and an activation switch electrically connected to the transducer power circuit. The electrical lockout is electrically connected to the transducer power circuit and configured to inhibit the activation switch from powering the ultrasonic transducer with the first and second modular assemblies misaligned from the predetermined alignment such that the first and second modular assemblies are in a locked-out state. The electrical lockout is further configured to allow the activation switch to power the ultrasonic transducer with the first and second modular assemblies in the predetermined alignment such that the first and second modular assemblies are in an operational state.
    Type: Grant
    Filed: May 7, 2021
    Date of Patent: February 20, 2024
    Assignee: Cilag GmbH International
    Inventors: Ryan M. Asher, Brian D. Black, John E. Brady, Alexander R. Cuti, Demetrius N. Harris, Carl J. Draginoff, Jr., Ellen Burkart, Geni M. Giannotti, Andrew Kolpitcke, Amy M. Krumm, Matthew T. Kuhn, Stephen M. Leuck, Cameron D. McLain, Ion V. Nicolaescu, Candice Otrembiak, Amrita S. Sawhney, Aaron C. Voegele, Grace E. Brooks, Fajian Zhang
  • Patent number: 11890010
    Abstract: A buttress applier cartridge configured to interface with an end effector of a surgical stapling instrument is disclosed. The buttress applier cartridge includes a first loading region configured to interface with an anvil of the end effector and a second loading region configured to interface with an elongate channel of the end effector. The first loading region includes a first absorbable layer and a loading assembly for securing the first absorbable layer to the anvil as the anvil approaches the first absorbable layer. The second loading region includes a staple cartridge removably coupled to the buttress applier cartridge. The staple cartridge includes a deck and a second absorbable layer positioned on the deck.
    Type: Grant
    Filed: December 2, 2020
    Date of Patent: February 6, 2024
    Assignee: Cllag GmbH International
    Inventors: Frederick E. Shelton, IV, Kevin M. Fiebig, John E. Brady, Andréas N. Ward, Nicholas M. Morgan, Diana M. Harbach, David L. Hamann
  • Patent number: 11883059
    Abstract: An ultrasonic surgical instrument includes a first modular assembly including at least one operator input feature an ultrasonic transducer supported by the first modular assembly, and a second modular assembly configured to be removably coupled with the first modular assembly. The second modular assembly includes at least a portion of an end effector extending distally from a distal end portion of the second modular assembly. The instrument includes a mechanical lockout assembly configured to switch between at least an unlocked configuration and a locked configuration. In the locked configuration, the first modular assembly and the second modular assembly are partially coupled together such that the operator is physically prevented from activating the instrument using the operator input feature. In the unlocked configuration, the first modular assembly and the second modular assembly are completely coupled together and the operator is able to activate the instrument using the operator input feature.
    Type: Grant
    Filed: February 4, 2021
    Date of Patent: January 30, 2024
    Assignee: Cilag GmbH International
    Inventors: John E. Brady, Alexander R. Cuti, Kevin M. Fiebig, Ellen Burkart, Demetrius N. Harris, Andrew Kolpitcke, Amy M. Krumm, Matthew T. Kuhn, Jason R. Lesko, Stephen M. Leuck, Guion Y. Lucas, Cameron D. McLain, Andrew S. Meyers, Candice Otrembiak, Grace E. Brooks
  • Publication number: 20240000521
    Abstract: A method for adjusting the operation of a clip applier using machine learning in a surgical suite is disclosed. The method comprises gathering data during surgical procedures, wherein the surgical procedures include the use of a clip applier comprising a crimping drive configured to be mechanically advanced through a crimping stroke. The method further comprises analyzing the gathered data to determine an appropriate operational adjustment of the clip applier and adjusting the operation of the clip applier to improve the operation of the clip applier.
    Type: Application
    Filed: September 13, 2023
    Publication date: January 4, 2024
    Inventors: Michael J. Stokes, Frederick E. Shelton, IV, Chester O. Baxter, III, Jason L. Harris, John E. Brady, Matthew T. Kuhn, Jeffery D. Bruns, Alexander R. Cuti, Andrew C. Deck, Bradley A. Arnold
  • Patent number: 11801098
    Abstract: A method for adjusting the operation of a clip applier using machine learning in a surgical suite is disclosed. The method comprises gathering data during surgical procedures, wherein the surgical procedures include the use of a clip applier comprising a crimping drive configured to be mechanically advanced through a crimping stroke. The method further comprises analyzing the gathered data to determine an appropriate operational adjustment of the clip applier and adjusting the operation of the clip applier to improve the operation of the clip applier.
    Type: Grant
    Filed: October 26, 2018
    Date of Patent: October 31, 2023
    Assignee: Cilag GmbH International
    Inventors: Michael J. Stokes, Frederick E. Shelton, IV, Chester O. Baxter, III, Jason L. Harris, John E. Brady, Matthew T. Kuhn, Jeffery D. Bruns, Alexander R. Cuti, Andrew C. Deck, Bradley A. Arnold
  • Publication number: 20230329742
    Abstract: An apparatus configured for use with an end effector of a surgical instrument, comprising: (a) a housing, wherein the housing includes a first housing portion defining a first gap, wherein the first gap is configured to receive a jaw of the end effector; and (b) a lubricant application member positioned within the first gap, wherein the lubricant application member is configured to be loaded with a lubricant for applying the lubricant to a tissue clamping surface of the jaw when the jaw is received within the first gap.
    Type: Application
    Filed: April 15, 2022
    Publication date: October 19, 2023
    Inventors: Steven M. Boronyak, Demetrius N. Harris, Patrick G. McElhaney, JR., Scott L. Johnson, Elie R. F. Laumond, Johnnie Bell, Maxwell T. Rockman, Jacob S. Gee, Jacqueline A. Anim, John E. Brady, Anna Peterson Wilson, Oscar R. Chavez Montes, Jeffrey L. Aldridge, Candice Otrembiak, Nicholas D. Schley, Stephen M. Torain, Chad P. Boudreaux, Kylie L. Hays, Rosa Castillo, Todd E. Riethmiller, Rachael A. Swenson, Louis P. Mingione, Monica L. Rivard, Justin M. Kovach, Mark E. Tebbe, Sean P. Conlon
  • Publication number: 20230301655
    Abstract: A modular surgical instrument system that comprises modular components and a control circuit electrically couplable to the modular components. The modular components comprise a shaft and a handle assembly. The handle assembly comprises a disposable outer housing. The disposable outer housing is movable between an open configuration and a closed configuration. The handle assembly further comprises a control inner core receivable inside the disposable outer housing in the open configuration. The disposable outer housing is configured to isolate the control inner core in the closed configuration. The modular components further comprise a loading unit releasably couplable to the shaft and a staple cartridge releasably couplable to an end effector. The loading unit comprises the end effector.
    Type: Application
    Filed: May 3, 2023
    Publication date: September 28, 2023
    Inventors: Frederick E. Shelton, IV, Kevin M. Fiebig, John E. Brady, Shane R. Adams
  • Patent number: 11744581
    Abstract: A surgical instrument that comprises an end effector comprising a first jaw, a second jaw, a staple cartridge, and at least one electrode. The surgical instrument further comprises a drive member, a motor assembly, and a control circuit. The control circuit is configured to cause the at least one electrode to deliver a therapeutic energy to the tissue in a first phase of a surgical treatment, cause the motor assembly to move the drive member to deploy staples into the tissue in a second phase of the surgical treatment, monitor a first tissue property in the first phase, and switch from the first phase to the second phase if at least one of two conditions is met, set a parameter of the second phase based on at least one measurement of the tissue property determined in the first phase, and monitor a second tissue property, in the second phase.
    Type: Grant
    Filed: December 2, 2020
    Date of Patent: September 5, 2023
    Assignee: Cilag GmbH International
    Inventors: Frederick E. Shelton, IV, Kevin M. Fiebig, Sarah A. Worthington, Patrick L. Creamer, John E. Brady
  • Publication number: 20230263548
    Abstract: A method for controlling an operation of an ultrasonic blade of an ultrasonic electromechanical system is disclosed. The method includes providing an ultrasonic electromechanical system comprising an ultrasonic transducer coupled to an ultrasonic blade via an ultrasonic waveguide; applying, by an energy source, a power level to the ultrasonic transducer; determining, by a control circuit coupled to a memory, a mechanical property of the ultrasonic electromechanical system; comparing, by the control circuit, the mechanical property with a reference mechanical property stored in the memory; and adjusting, by the control circuit, the power level applied to the ultrasonic transducer based on the comparison of the mechanical property with the reference mechanical property.
    Type: Application
    Filed: February 24, 2023
    Publication date: August 24, 2023
    Inventors: Frederick E. Shelton, IV, David C. Yates, Jason L. Harris, Kevin L. Houser, John E. Brady, Gregory A. Trees, Patrick J. Scoggins, Madeleine C. Jayme, Kristen G. Denzinger, Cameron R. Nott, Craig N. Faller, Amrita S. Sawhney, Eric M. Roberson, Stephen M. Leuck, Brian D. Black, Jeffrey D. Messerly, Fergus P. Quigley, Tamara S. Widenhouse
  • Publication number: 20230233245
    Abstract: Various aspects of a generator, ultrasonic device, and method for estimating a state of an end effector of an ultrasonic device are disclsoed. The ultrasonic device includes an electromechanical ultrasonic system defined by a predetermined resonant frequency, including an ultrasonic transducer coupled to an ultrasonic blade. A control circuit measures a complex impedance of an ultrasonic transducer, wherein the complex impedance is defined as Z g ( t ) = V g t I g t . The control circuit receivs a complex impedance measurement data point and compares the complex impedance measurement data point to a data point in a reference complex impedance characteristic pattern. The control circuit then classifies the complex impedance measurement data point based on a result of the comparison analysis and assigns a state or condition of the end effector based on the result of the comparison analysis.
    Type: Application
    Filed: October 10, 2022
    Publication date: July 27, 2023
    Inventors: Cameron R. Nott, Foster B. Stulen, Fergus P. Quigley, John E. Brady, Gregory A. Trees, Amrita Singh Sawhney, Rafael J. Ruiz Ortiz, Patrick J. Scoggins, Kristen G. Denzinger, Craig N. Faller, Madeleine C. Jayme, Alexander R. Cuti, Matthew S. Schneider, Chad P. Boudreaux, Brian D. Black, Maxwell T. Rockman, Gregory D. Bishop, Frederick E. Shelton, IV, David C. Yates
  • Patent number: 11678927
    Abstract: An ultrasonic device may include an electromechanical ultrasonic system defined by a predetermined resonant frequency and include an ultrasonic transducer coupled to an ultrasonic blade. A method of delivering energy to the device may include applying energy to the blade at a first power level via the transducer coupled to the blade, measuring a complex impedance of the transducer, receiving a complex impedance feedback data point, comparing the complex impedance feedback data point to a reference complex impedance characteristic pattern, and determining that the blade is contacting a vessel based on the comparison. The method may also include disabling the power applied to the transducer and switching to a lower power level. The method may further include generating a warning that the blade is contacting a vessel, such as a light or a sound. An ultrasonic surgical instrument may effect the method.
    Type: Grant
    Filed: September 27, 2018
    Date of Patent: June 20, 2023
    Assignee: Cilag GmbH International
    Inventors: John E. Brady, Gregory A. Trees
  • Patent number: 11653920
    Abstract: A surgical instrument system that comprises a shaft and a handle assembly releasably couplable to the shaft. The handle assembly comprises a disposable outer housing defining a sterile barrier. The disposable outer housing is movable between an open configuration and a closed configuration. The handle assembly further comprises a control inner core receivable inside the disposable outer housing in the open configuration. The disposable outer housing is configured to isolate the control inner core within the sterile barrier in the closed configuration. The surgical instrument system further comprises an end effector releasably couplable to the shaft and an electrical interface assembly configured to transmit data and power between the control inner core and the end effector. The electrical interface assembly comprises a first interface portion on a first side of the sterile barrier, and a second interface portion on a second side of the sterile barrier opposite the first side.
    Type: Grant
    Filed: December 2, 2020
    Date of Patent: May 23, 2023
    Assignee: Cilag GmbH International
    Inventors: Frederick E. Shelton, IV, Kevin M. Fiebig, John E. Brady, Shane R. Adams
  • Patent number: 11653926
    Abstract: A surgical stapling instrument includes an anvil and a stapling head assembly. The anvil defines staple forming pockets. The stapling head assembly includes a body, a coupling member, a firing assembly, and a staple deck. The coupling member is configured to actuate relative to the body to thereby acuate the anvil relative to the body. The firing assembly is configured to drive staples against the staple forming pockets of the anvil. The staple deck is defined by an outer arched perimeter and an inner arched perimeter fixed to the body. The staple deck defines staple openings. At least one non-tangential staple opening in the of staple openings extends along a longitudinal axis in a non-tangential relationship with a closest tangent line of the inner arched perimeter or the outer arched perimeter.
    Type: Grant
    Filed: August 13, 2021
    Date of Patent: May 23, 2023
    Assignee: Cilag GmbH International
    Inventors: Shannon L. Jones, Gregory J. Bakos, Jeffery Bruns, Ryan W. McGhee, Scott A. Jenkins, Laura S. Downing, John E. Feds, Maxwell T. Rockman, John E. Brady, Ravi Patel, Aaron C. Voegele, Austin J. Bridges
  • Patent number: 11612408
    Abstract: Various systems and methods for determining the composition of tissue via an ultrasonic surgical instrument are disclosed. A control circuit can be configured to monitor the change in resonant frequency of an ultrasonic electromechanical system of the ultrasonic surgical instrument as the ultrasonic blade oscillates against a tissue and determine the composition of the tissue accordingly. In some aspects, the control circuit can be configured to modify the operation of the ultrasonic electromechanical system or other operational parameters of the ultrasonic surgical instrument according to the detected tissue composition.
    Type: Grant
    Filed: August 28, 2018
    Date of Patent: March 28, 2023
    Assignee: Cilag GmbH International
    Inventors: David C. Yates, Jason L. Harris, Frederick E. Shelton, IV, Kevin L. Houser, John E. Brady, Gregory A. Trees, Patrick J. Scoggins, Madeleine C. Jayme, Kristen G. Denzinger, Cameron R. Nott, Craig N. Faller, Amrita S. Sawhney, Eric M. Roberson, Stephen M. Leuck, Brian D. Black
  • Patent number: 11589888
    Abstract: A method for controlling an operation of an ultrasonic blade of an ultrasonic electromechanical system is disclosed. The method includes providing an ultrasonic electromechanical system comprising an ultrasonic transducer coupled to an ultrasonic blade via an ultrasonic waveguide; applying, by an energy source, a power level to the ultrasonic transducer; determining, by a control circuit coupled to a memory, a mechanical property of the ultrasonic electromechanical system; comparing, by the control circuit, the mechanical property with a reference mechanical property stored in the memory; and adjusting, by the control circuit, the power level applied to the ultrasonic transducer based on the comparison of the mechanical property with the reference mechanical property.
    Type: Grant
    Filed: December 4, 2018
    Date of Patent: February 28, 2023
    Assignee: Cilag GmbH International
    Inventors: Frederick E. Shelton, IV, David C. Yates, Jason L. Harris, Kevin L. Houser, John E. Brady, Gregory A. Trees, Patrick J. Scoggins, Madeleine C. Jayme, Kristen G. Denzinger, Cameron R. Nott, Craig N. Faller, Amrita S. Sawhney, Eric M. Roberson, Stephen M. Leuck, Brian D. Black, Fergus P. Quigley, Tamara Widenhouse
  • Publication number: 20230053080
    Abstract: A surgical stapling instrument includes an anvil and a stapling head assembly. The anvil defines staple forming pockets. The stapling head assembly includes a body, a coupling member, a firing assembly, and a staple deck. The coupling member is configured to actuate relative to the body to thereby acuate the anvil relative to the body. The firing assembly is configured to drive staples against the staple forming pockets of the anvil. The staple deck is defined by an outer arched perimeter and an inner arched perimeter fixed to the body. The staple deck defines staple openings. At least one non-tangential staple opening in the of staple openings extends along a longitudinal axis in a non-tangential relationship with a closest tangent line of the inner arched perimeter or the outer arched perimeter.
    Type: Application
    Filed: August 13, 2021
    Publication date: February 16, 2023
    Inventors: Shannon L. Jones, Gregory J. Bakos, Jeffery D. Bruns, Ryan W. McGhee, Scott A. Jenkins, Laura A. Downing, John E. Feds, Maxwell T. Rockman, John E. Brady, Ravi C. Patel, Aaron C. Voegele, Austin J. Bridges
  • Publication number: 20230000518
    Abstract: Various aspects of a generator, ultrasonic device, and method for estimating and controlling a state of an end effector of an ultrasonic device are disclosed. The ultrasonic device includes an electromechanical ultrasonic system defined by a predetermined resonant frequency, including an ultrasonic transducer coupled to an ultrasonic blade. A control circuit measures a complex impedance of an ultrasonic transducer, wherein the complex impedance as defined as Z g ( t ) = V g ( t ) I g ( t ) ; The control circuit receives a complex impedance measurement data point and compares the complex impedance measurement data point to a data point in a reference complex impedance characteristic pattern. The control circuit then classifies the complex impedance measurement data point based on a result of the comparison analysis and assigns a state or condition of the end effector based on the result of the comparison analysis.
    Type: Application
    Filed: June 7, 2022
    Publication date: January 5, 2023
    Inventors: Cameron R. Nott, Foster B. Stulen, Fergus P. Quigley, John E. Brady, Gregory A. Trees, Amrita S. Sawhney, Patrick J. Scoggins, Kristen G. Denzinger, Craig N. Faller, Madeleine C. Jayme, Alexander R. Cuti, Matthew S. Schneider, Chad P. Boudreaux, Brian D. Black, Maxwell T. Rockman, Gregory D. Bishop, Eric M. Roberson, Stephen M. Leuck, James M. Wilson