Patents by Inventor John E. Fitch
John E. Fitch has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20240361281Abstract: Method and system are disclosed for characterizing and quantifying composite laminate structures. The method and system take a composite laminate of unknown ply stack composition and sequence and determine various information about the individual plies, such as ply stack, orientation, microstructure, and type. The method and system distinguishes between weave types that exhibit similar planar stiffness behaviors, but which produce different failure mechanisms. Individual ply information then is used to derive the laminate bulk properties from externally provided constitutive properties of the fiber and matrix, including extensional stiffness, bending-extension coupling stiffness, bending stiffness, and the like. The laminate bulk properties are then used to generate a probabilistic failure envelope for the composite laminate.Type: ApplicationFiled: July 5, 2024Publication date: October 31, 2024Applicant: Verifi Technologies, LLCInventors: David A. JACK, John E. FITCH, Theresa VO
-
Publication number: 20240361280Abstract: Embodiments are disclosed for characterizing and quantifying composite laminate structures. The embodiments take a composite laminate of unknown ply stack composition and sequence and determine various information about the individual plies, such as ply stack, orientation, microstructure, and type. The embodiments distinguish between weave types that exhibit similar planar stiffness behaviors, but produce different failure mechanisms. Individual ply information is then used to derive the laminate bulk properties from externally provided constitutive properties of the fiber and matrix, including extensional stiffness, bending-extension coupling stiffness, bending stiffness, and the like. The laminate bulk properties are then used to generate a probabilistic failure envelope for the composite laminate. In some embodiments, ply stack type and sequence are also determined for a curved composite laminate using the disclosed embodiments by adding a rotational stage.Type: ApplicationFiled: July 5, 2024Publication date: October 31, 2024Applicant: Verifi Technologies, LLCInventors: David A. Jack, John E. Fitch, Theresa Vo
-
Patent number: 12050204Abstract: Method and system are disclosed for characterizing and quantifying composite laminate structures. The method and system take a composite laminate of unknown ply stack composition and sequence and determine various information about the individual plies, such as ply stack, orientation, microstructure, and type. The method and system distinguishes between weave types that exhibit similar planar stiffness behaviors, but which produce different failure mechanisms. Individual ply information then is used to derive the laminate bulk properties from externally provided constitutive properties of the fiber and matrix, including extensional stiffness, bending-extension coupling stiffness, bending stiffness, and the like. The laminate bulk properties are then used to generate a probabilistic failure envelope for the composite laminate.Type: GrantFiled: August 30, 2022Date of Patent: July 30, 2024Assignee: VERIFI TECHNOLOGIES, LLCInventors: David A. Jack, John E. Fitch, Theresa Vo
-
Patent number: 12050203Abstract: Embodiments are disclosed for characterizing and quantifying composite laminate structures. The embodiments take a composite laminate of unknown ply stack composition and sequence and determine various information about the individual plies, such as ply stack, orientation, microstructure, and type. The embodiments distinguish between weave types that exhibit similar planar stiffness behaviors, but produce different failure mechanisms. Individual ply information is then used to derive the laminate bulk properties from externally provided constitutive properties of the fiber and matrix, including extensional stiffness, bending-extension coupling stiffness, bending stiffness, and the like. The laminate bulk properties are then used to generate a probabilistic failure envelope for the composite laminate. In some embodiments, ply stack type and sequence are also determined for a curved composite laminate using the disclosed embodiments by adding a rotational stage.Type: GrantFiled: August 30, 2022Date of Patent: July 30, 2024Assignee: VERIFI TECHNOLOGIES, LLCInventors: David A. Jack, John E. Fitch, Theresa Vo
-
Publication number: 20220412924Abstract: Method and system are disclosed for characterizing and quantifying composite laminate structures. The method and system take a composite laminate of unknown ply stack composition and sequence and determine various information about the individual plies, such as ply stack, orientation, microstructure, and type. The method and system distinguishes between weave types that exhibit similar planar stiffness behaviors, but which produce different failure mechanisms. Individual ply information then is used to derive the laminate bulk properties from externally provided constitutive properties of the fiber and matrix, including extensional stiffness, bending-extension coupling stiffness, bending stiffness, and the like. The laminate bulk properties are then used to generate a probabilistic failure envelope for the composite laminate.Type: ApplicationFiled: August 30, 2022Publication date: December 29, 2022Applicant: Verifi Technologies, LLCInventors: David A. JACK, John E. FITCH, Theresa VO
-
Publication number: 20220412925Abstract: Embodiments are disclosed for characterizing and quantifying composite laminate structures. The embodiments take a composite laminate of unknown ply stack composition and sequence and determine various information about the individual plies, such as ply stack, orientation, microstructure, and type. The embodiments distinguish between weave types that exhibit similar planar stiffness behaviors, but produce different failure mechanisms. Individual ply information is then used to derive the laminate bulk properties from externally provided constitutive properties of the fiber and matrix, including extensional stiffness, bending-extension coupling stiffness, bending stiffness, and the like. The laminate bulk properties are then used to generate a probabilistic failure envelope for the composite laminate. In some embodiments, ply stack type and sequence are also determined for a curved composite laminate using the disclosed embodiments by adding a rotational stage.Type: ApplicationFiled: August 30, 2022Publication date: December 29, 2022Applicant: Verifi Technologies, LLCInventors: David A. Jack, John E. Fitch, Theresa Vo
-
Patent number: 11442045Abstract: Method and system are disclosed for characterizing and quantifying composite laminate structures. The method and system take a composite laminate of unknown ply stack composition and sequence and determine various information about the individual plies, such as ply stack, orientation, microstructure, and type. The method and system can distinguish between weave types that may exhibit similar planar stiffness behaviors, but would produce different failure mechanisms. Individual ply information may then be used to derive the laminate bulk properties from externally provided constitutive properties of the fiber and matrix, including extensional stiffness, bending-extension coupling stiffness, bending stiffness, and the like. The laminate bulk properties may then be used to generate a probabilistic failure envelope for the composite laminate.Type: GrantFiled: June 29, 2020Date of Patent: September 13, 2022Assignee: VERIFI TECHNOLOGIES, LLCInventors: David A. Jack, John E. Fitch, Theresa Vo
-
Patent number: 11442044Abstract: Embodiments are disclosed for characterizing and quantifying composite laminate structures. The embodiments take a composite laminate of unknown ply stack composition and sequence and determine various information about the individual plies, such as ply stack, orientation, microstructure, and type. The embodiments can distinguish between weave types that may exhibit similar planar stiffness behaviors, but would produce different failure mechanisms. Individual ply information may then be used to derive the laminate bulk properties from externally provided constitutive properties of the fiber and matrix, including extensional stiffness, bending-extension coupling stiffness, bending stiffness, and the like. The laminate bulk properties may then be used to generate a probabilistic failure envelope for the composite laminate. In some embodiments, ply stack type and sequence may also be determined for a curved composite laminate using the disclosed embodiments by adding a rotational stage.Type: GrantFiled: August 28, 2020Date of Patent: September 13, 2022Assignee: VERIFI TECHNOLOGIES, LLCInventors: David A. Jack, John E. Fitch, Theresa Vo
-
Publication number: 20210302373Abstract: The present disclosure provides a system and method for real-time visualization of a material during ultrasonic non-destructive testing. The system includes a graphical user interface (GUI) capable of showing a three-dimensional (3-D) image of a composite laminate constructed of a series of two-dimensional (2-D) cross sections. The GUI is capable of displaying the 3-D image as each additional 2-D cross section is scanned by an ultrasonic testing apparatus in real time or near real time, including probable defect regions that contain a flaw such as a hole, crack, wrinkle, or foreign object within the composite. Furthermore, in one embodiment, the system includes an artificial intelligence capable of highlighting defect areas within the 3-D image in real time or near real time and providing data regarding each defect area, such as the depth, size, and/or type of each defect.Type: ApplicationFiled: January 14, 2021Publication date: September 30, 2021Applicant: Verifi Technologies, LLCInventors: David A. Jack, John E. Fitch, Nathaniel J. Blackman
-
Publication number: 20200393421Abstract: Embodiments are disclosed for characterizing and quantifying composite laminate structures. The embodiments take a composite laminate of unknown ply stack composition and sequence and determine various information about the individual plies, such as ply stack, orientation, microstructure, and type. The embodiments can distinguish between weave types that may exhibit similar planar stiffness behaviors, but would produce different failure mechanisms. Individual ply information may then be used to derive the laminate bulk properties from externally provided constitutive properties of the fiber and matrix, including extensional stiffness, bending-extension coupling stiffness, bending stiffness, and the like. The laminate bulk properties may then be used to generate a probabilistic failure envelope for the composite laminate. In some embodiments, ply stack type and sequence may also be determined for a curved composite laminate using the disclosed embodiments by adding a rotational stage.Type: ApplicationFiled: August 28, 2020Publication date: December 17, 2020Inventors: David A. JACK, John E. FITCH, Theresa VO, Caleb Heimsoth, Sarah Stair
-
Publication number: 20200333297Abstract: Method and system are disclosed for characterizing and quantifying composite laminate structures. The method and system take a composite laminate of unknown ply stack composition and sequence and determine various information about the individual plies, such as ply stack, orientation, microstructure, and type. The method and system can distinguish between weave types that may exhibit similar planar stiffness behaviors, but would produce different failure mechanisms. Individual ply information may then be used to derive the laminate bulk properties from externally provided constitutive properties of the fiber and matrix, including extensional stiffness, bending-extension coupling stiffness, bending stiffness, and the like. The laminate bulk properties may then be used to generate a probabilistic failure envelope for the composite laminate.Type: ApplicationFiled: June 29, 2020Publication date: October 22, 2020Applicant: Baylor UniversityInventors: David A. JACK, John E. FITCH, Theresa VO
-
Patent number: 10761067Abstract: Embodiments are disclosed for characterizing and quantifying composite laminate structures, including structures with surfaces that are curved in two and three dimensions. The embodiments take a composite laminate of unknown ply stack composition and sequence and determine various information about the individual plies, such as ply stack, orientation, microstructure, and type. The embodiments can distinguish between weave types that may exhibit similar planar stiffness behaviors, but would produce different failure mechanisms. Individual ply information may then be used to derive the laminate bulk properties from externally provided constitutive properties of the fiber and matrix, including extensional stiffness, bending-extension coupling stiffness, bending stiffness, and the like. The laminate bulk properties may then be used to generate a probabilistic failure envelope for the composite laminate.Type: GrantFiled: September 8, 2015Date of Patent: September 1, 2020Assignee: Baylor UniversityInventors: David A. Jack, John E. Fitch, Theresa Vo, Caleb Heimsoth, Sarah Stair
-
Patent number: 10697941Abstract: Method and system are disclosed for characterizing and quantifying composite laminate structures. The method and system take a composite laminate of unknown ply stack composition and sequence and determine various information about the individual plies, such as ply stack, orientation, microstructure, and type. The method and system can distinguish between weave types that may exhibit similar planar stiffness behaviors, but would produce different failure mechanisms. Individual ply information may then be used to derive the laminate bulk properties from externally provided constitutive properties of the fiber and matrix, including extensional stiffness, bending-extension coupling stiffness, bending stiffness, and the like. The laminate bulk properties may then be used to generate a probabilistic failure envelope for the composite laminate.Type: GrantFiled: March 20, 2013Date of Patent: June 30, 2020Assignee: BAYLOR UNIVERSITYInventors: David A. Jack, John E. Fitch, Theresa Vo
-
Publication number: 20160291560Abstract: An autonomous system for managing power distribution to an electrically-powered device that includes a power controller module that includes power input and power output abilities and operably connected power switching abilities, wherein the power switching is configured for actuation by an integral power management module operably connected thereto, the integral power management module including integral actuation signal detection and actuation abilities configured for, in accordance with commands and operational parameters, upon detection of an actuation signal, actuation the integral power switching to alter power output through the power output from a first output level to a second output level.Type: ApplicationFiled: April 20, 2016Publication date: October 6, 2016Inventors: John E. Fitch, James M. Steward
-
Publication number: 20150377839Abstract: Embodiments are disclosed for characterizing and quantifying composite laminate structures, including structures with surfaces that are curved in two and three dimensions. The embodiments take a composite laminate of unknown ply stack composition and sequence and determine various information about the individual plies, such as ply stack, orientation, microstructure, and type. The embodiments can distinguish between weave types that may exhibit similar planar stiffness behaviors, but would produce different failure mechanisms. Individual ply information may then be used to derive the laminate bulk properties from externally provided constitutive properties of the fiber and matrix, including extensional stiffness, bending-extension coupling stiffness, bending stiffness, and the like. The laminate bulk properties may then be used to generate a probabilistic failure envelope for the composite laminate.Type: ApplicationFiled: September 8, 2015Publication date: December 31, 2015Inventors: David A. JACK, John E. FITCH, Theresa VO, Caleb Heimsoth, Sarah Stair
-
Publication number: 20150046098Abstract: Method and system are disclosed for characterizing and quantifying composite laminate structures. The method and system take a composite laminate of unknown ply stack composition and sequence and determine various information about the individual plies, such as ply stack, orientation, microstructure, and type. The method and system can distinguish between weave types that may exhibit similar planar stiffness behaviors, but would produce different failure mechanisms. Individual ply information may then be used to derive the laminate bulk properties from externally provided constitutive properties of the fiber and matrix, including extensional stiffness, bending-extension coupling stiffness, bending stiffness, and the like. The laminate bulk properties may then be used to generate a probabilistic failure envelope for the composite laminate.Type: ApplicationFiled: March 20, 2013Publication date: February 12, 2015Applicant: BAYLOR UNIVERSITYInventors: David A. Jack, John E. Fitch, Theresa Vo