Patents by Inventor John E. Garnier

John E. Garnier has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210269366
    Abstract: Methods of producing silicon carbide, and other metal carbide materials. The method comprises reacting a carbon material (e.g., fibers, or nanoparticles, such as powder, platelet, foam, nanofiber, nanorod, nanotube, whisker, graphene (e.g., graphite), fullerene, or hydrocarbon) and a metal or metal oxide source material (e.g., in gaseous form) in a reaction chamber at an elevated temperature ranging up to approximately 2400° C. or more, depending on the particular metal or metal oxide, and the desired metal carbide being produced. A partial pressure of oxygen in the reaction chamber is maintained at less than approximately 1.01×102 Pascal, and overall pressure is maintained at approximately 1 atm.
    Type: Application
    Filed: February 19, 2021
    Publication date: September 2, 2021
    Inventors: John E. Garnier, George W. Griffith
  • Patent number: 10954167
    Abstract: Methods of producing silicon carbide, and other metal carbide materials. The method comprises reacting a carbon material (e.g., fibers, or nanoparticles, such as powder, platelet, foam, nanofiber, nanorod, nanotube, whisker, graphene (e.g., graphite), fullerene, or hydrocarbon) and a metal or metal oxide source material (e.g., in gaseous form) in a reaction chamber at an elevated temperature ranging up to approximately 2400° C. or more, depending on the particular metal or metal oxide, and the desired metal carbide being produced. A partial pressure of oxygen in the reaction chamber is maintained at less than approximately 1.01×102 Pascal, and overall pressure is maintained at approximately 1 atm.
    Type: Grant
    Filed: January 29, 2019
    Date of Patent: March 23, 2021
    Assignee: Advanced Ceramic Fibers, LLC
    Inventors: John E. Garnier, George W. Griffith
  • Patent number: 10793478
    Abstract: Ceramic composite materials that are reinforced with carbide fibers can exhibit ultra-high temperature resistance. For example, such materials may exhibit very low creep at temperatures of up to 2700° F. (1480° C.). The present composites are specifically engineered to exhibit matched thermodynamically stable crystalline phases between the materials included within the composite. In other words, the reinforcing fibers, a debonding interface layer disposed over the reinforcing fibers, and the matrix material of the composite may all be of the same crystalline structural phase (all hexagonal), for increased compatibility and improved properties. Such composite materials may be used in numerous applications.
    Type: Grant
    Filed: July 9, 2018
    Date of Patent: October 6, 2020
    Assignee: ADVANCED CERAMIC FIBERS, LLC.
    Inventor: John E. Garnier
  • Patent number: 10435820
    Abstract: A method of producing, from a continuous or discontinuous (e.g., chopped) carbon fiber, partially to fully converted metal carbide fibers. The method comprises reacting a carbon fiber material with at least one of a metal or metal oxide source material at a temperature greater than a melting temperature of the metal or metal oxide source material (e.g., where practical, at a temperature greater than the vaporization temperature of the metal or metal oxide source material). Additional methods, various forms of carbon fiber, metal carbide fibers, and articles including the metal carbide fibers are also disclosed.
    Type: Grant
    Filed: October 27, 2017
    Date of Patent: October 8, 2019
    Assignee: ADVANCED CERAMIC FIBERS
    Inventor: John E. Garnier
  • Publication number: 20190077718
    Abstract: Ceramic composite materials that are reinforced with carbide fibers can exhibit ultra-high temperature resistance. For example, such materials may exhibit very low creep at temperatures of up to 2700° F. (1480° C.). The present composites are specifically engineered to exhibit matched thermodynamically stable crystalline phases between the materials included within the composite. In other words, the reinforcing fibers, a debonding interface layer disposed over the reinforcing fibers, and the matrix material of the composite may all be of the same crystalline structural phase (all hexagonal), for increased compatibility and improved properties. Such composite materials may be used in numerous applications.
    Type: Application
    Filed: July 9, 2018
    Publication date: March 14, 2019
    Inventor: John E. Garnier
  • Patent number: 10208238
    Abstract: Methods of producing continuous (or discontinuous) boron carbide fibers. The method comprises reacting a continuous or discontinuous carbon fiber material and a boron oxide gas within a temperature range of from approximately 1400° C. to approximately 2200° C. Articles including such partially or fully converted fibers may be provided, including such reinforcing fibers in a matrix of ceramic (a CMC), in metal (a MMC), or other matrix (e.g., polymer, etc.).
    Type: Grant
    Filed: November 30, 2015
    Date of Patent: February 19, 2019
    Assignee: ADVANCED CERAMIC FIBERS, LLC
    Inventors: John E. Garnier, George W. Griffith
  • Publication number: 20180051396
    Abstract: A method of producing, from a continuous or discontinuous (e.g., chopped) carbon fiber, partially to fully converted metal carbide fibers. The method comprises reacting a carbon fiber material with at least one of a metal or metal oxide source material at a temperature greater than a melting temperature of the metal or metal oxide source material (e.g., where practical, at a temperature greater than the vaporization temperature of the metal or metal oxide source material). Additional methods, various forms of carbon fiber, metal carbide fibers, and articles including the metal carbide fibers are also disclosed.
    Type: Application
    Filed: October 27, 2017
    Publication date: February 22, 2018
    Inventor: John E. Garnier
  • Patent number: 9803296
    Abstract: A method of producing, from a continuous or discontinuous (e.g., chopped) carbon fiber, partially to fully converted metal carbide fibers. The method comprises reacting a carbon fiber material with at least one of a metal or metal oxide source material at a temperature greater than a melting temperature of the metal or metal oxide source material (e.g., where practical, at a temperature greater than the vaporization temperature of the metal or metal oxide source material). Additional methods, various forms of carbon fiber, metal carbide fibers, and articles including the metal carbide fibers are also disclosed.
    Type: Grant
    Filed: February 6, 2015
    Date of Patent: October 31, 2017
    Assignee: Advanced Ceramic Fibers, LLC
    Inventor: John E. Garnier
  • Publication number: 20160265143
    Abstract: A method of producing, from a continuous or discontinuous (e.g., chopped) carbon fiber, partially to fully converted metal carbide fibers. The method comprises reacting a carbon fiber material with at least one of a metal or metal oxide source material at a temperature greater than a melting temperature of the metal or metal oxide source material (e.g., where practical, at a temperature greater than the vaporization temperature of the metal or metal oxide source material). Additional methods, various forms of carbon fiber, metal carbide fibers, and articles including the metal carbide fibers are also disclosed.
    Type: Application
    Filed: February 6, 2015
    Publication date: September 15, 2016
    Inventor: John E. Garnier
  • Patent number: 9342876
    Abstract: Embodiments discussed herein in the form of methods, systems, and computer-readable media deal with the application of advanced “projectional” morphological algorithms for solving a broad range of problems. In a method of performing projectional morphological analysis, an N-dimensional input signal is supplied. At least one N-dimensional form indicative of at least one feature in the N-dimensional input signal is identified. The N-dimensional input signal is filtered relative to the at least one N-dimensional form and an N-dimensional output signal is generated indicating results of the filtering at least as differences in the N-dimensional input signal relative to the at least one N-dimensional form.
    Type: Grant
    Filed: April 25, 2013
    Date of Patent: May 17, 2016
    Assignee: BATTELLE ENERGY ALLIANCE, LLC
    Inventors: Michael V. Glazoff, Kevin L. Gering, John E. Garnier, Sergey N. Rashkeev, Yuri Petrovich Pyt'ev
  • Publication number: 20160122252
    Abstract: Methods of producing continuous (or discontinuous) boron carbide fibers. The method comprises reacting a continuous or discontinuous carbon fiber material and a boron oxide gas within a temperature range of from approximately 1400° C. to approximately 2200° C. Articles including such partially or fully converted fibers may be provided, including such reinforcing fibers in a matrix of ceramic (a CMC), in metal (a MMC), or other matrix (e.g., polymer, etc.).
    Type: Application
    Filed: November 30, 2015
    Publication date: May 5, 2016
    Inventors: John E. Garnier, George W. Griffith
  • Patent number: 9272913
    Abstract: Methods of producing silicon carbide fibers. The method comprises reacting a continuous carbon fiber material and a silicon-containing gas in a reaction chamber at a temperature ranging from approximately 1500° C. to approximately 2000° C. A partial pressure of oxygen in the reaction chamber is maintained at less than approximately 1.01×102 Pascal to produce continuous alpha silicon carbide fibers. Continuous alpha silicon carbide fibers and articles formed from the continuous alpha silicon carbide fibers are also disclosed.
    Type: Grant
    Filed: December 15, 2014
    Date of Patent: March 1, 2016
    Assignee: ADVANCED CERAMIC FIBERS, LLC
    Inventors: John E. Garnier, George W. Griffith
  • Patent number: 9275762
    Abstract: A multi-layered cladding material including a ceramic matrix composite and a metallic material, and a tube formed from the cladding material. The metallic material forms an inner liner of the tube and enables hermetic sealing of thereof. The metallic material at ends of the tube may be exposed and have an increased thickness enabling end cap welding. The metallic material may, optionally, be formed to infiltrate voids in the ceramic matrix composite, the ceramic matrix composite encapsulated by the metallic material. The ceramic matrix composite includes a fiber reinforcement and provides increased mechanical strength, stiffness, thermal shock resistance and high temperature load capacity to the metallic material of the inner liner. The tube may be used as a containment vessel for nuclear fuel used in a nuclear power plant or other reactor. Methods for forming the tube comprising the ceramic matrix composite and the metallic material are also disclosed.
    Type: Grant
    Filed: October 8, 2010
    Date of Patent: March 1, 2016
    Assignee: ADVANCED CERAMIC FIBERS, LLC
    Inventors: John E. Garnier, George W. Griffith
  • Publication number: 20160023911
    Abstract: Methods of producing silicon carbide fibers. The method comprises reacting a continuous carbon fiber material and a silicon-containing gas in a reaction chamber at a temperature ranging from approximately 1500° C. to approximately 2000° C. A partial pressure of oxygen in the reaction chamber is maintained at less than approximately 1.01×102 Pascal to produce continuous alpha silicon carbide fibers. Continuous alpha silicon carbide fibers and articles formed from the continuous alpha silicon carbide fibers are also disclosed.
    Type: Application
    Filed: December 15, 2014
    Publication date: January 28, 2016
    Inventors: John E. Garnier, George W. Griffith
  • Patent number: 9199227
    Abstract: Methods of producing continuous boron carbide fibers. The method comprises reacting a continuous carbon fiber material and a boron oxide gas within a temperature range of from approximately 1400° C. to approximately 2200° C. Continuous boron carbide fibers, continuous fibers comprising boron carbide, and articles including at least a boron carbide coating are also disclosed.
    Type: Grant
    Filed: August 23, 2011
    Date of Patent: December 1, 2015
    Assignee: ADVANCED CERAMIC FIBERS, LLC
    Inventors: John E. Garnier, George W. Griffith
  • Patent number: 8940391
    Abstract: Methods of producing silicon carbide fibers. The method comprises reacting a continuous carbon fiber material and a silicon-containing gas in a reaction chamber at a temperature ranging from approximately 1500° C. to approximately 2000° C. A partial pressure of oxygen in the reaction chamber is maintained at less than approximately 1.01×102 Pascal to produce continuous alpha silicon carbide fibers. Continuous alpha silicon carbide fibers and articles formed from the continuous alpha silicon carbide fibers are also disclosed.
    Type: Grant
    Filed: October 8, 2010
    Date of Patent: January 27, 2015
    Assignee: Advanced Ceramic Fibers, LLC
    Inventors: John E. Garnier, George W. Griffith
  • Publication number: 20130048903
    Abstract: Methods of producing continuous boron carbide fibers. The method comprises reacting a continuous carbon fiber material and a boron oxide gas within a temperature range of from approximately 1400° C. to approximately 2200° C. Continuous boron carbide fibers, continuous fibers comprising boron carbide, and articles including at least a boron carbide coating are also disclosed.
    Type: Application
    Filed: August 23, 2011
    Publication date: February 28, 2013
    Applicant: BATTELLE ENERGY ALLIANCE, LLC
    Inventors: John E. Garnier, George W. Griffith
  • Publication number: 20130010914
    Abstract: Methods of forming composite bodies and materials including a metal oxide, such as, uranium dioxide, and silicon carbide are disclosed. The composite materials may be formed from a metal oxide powder, a silicon carbide powder and, optionally, a carbon powder. For example, the metal oxide powder, the silicon carbide powder and the carbon powder, if present, may each be combined with a binder and may be deposited in succession to form a precursor structure. Segments of the precursor structure may be removed and pressed together to form a multi-matrix material that includes interlaced regions of material including at least one of the metal oxide powder, the silicon carbide powder and, optionally, the carbon powder. The segments may be extruded or coextruded with another material, such as, a silicon carbide material, to form a green body. The green body may be sintered to form the composite bodies and materials having a desired final density.
    Type: Application
    Filed: July 8, 2011
    Publication date: January 10, 2013
    Applicant: BATTELLE ENERGY ALLIANCE, LLC
    Inventors: John E. Garnier, Michael V. Glazoff, Sergey Rashkeev, George W. Griffith
  • Publication number: 20130010915
    Abstract: Fuel elements for use in reactors include a cladding tube having a longitudinal axis and fuel disposed therein. At least one channel is formed in at least one of the fuel and the cladding tube and extends in a direction along the longitudinal axis of the cladding tube. The fuel element further includes a plenum having at least one getter material disposed therein. Methods of segregating gases in fuel elements may include forming a temperature differential in the fuel element, enabling at least one gas to travel into at least one channel formed in the fuel element, and retaining a portion of the at least one gas with at least one getter material. Methods of segregating gases in fuel elements also may include enabling at least one gas to travel through at least one channel of a plurality of channels formed in the fuel element.
    Type: Application
    Filed: July 8, 2011
    Publication date: January 10, 2013
    Applicant: BATTELLE ENERGY ALLIANCE, LLC
    Inventors: John E. Garnier, George W. Griffith, Michael V. Glazoff, Sergey Rashkeev
  • Publication number: 20120088088
    Abstract: Methods of producing silicon carbide fibers. The method comprises reacting a continuous carbon fiber material and a silicon-containing gas in a reaction chamber at a temperature ranging from approximately 1500° C. to approximately 2000° C. A partial pressure of oxygen in the reaction chamber is maintained at less than approximately 1.01×102 Pascal to produce continuous alpha silicon carbide fibers. Continuous alpha silicon carbide fibers and articles formed from the continuous alpha silicon carbide fibers are also disclosed.
    Type: Application
    Filed: October 8, 2010
    Publication date: April 12, 2012
    Applicant: BATTELLE ENERGY ALLIANCE, LLC
    Inventors: John E. Garnier, George W. Griffith