Patents by Inventor John E. Hamer

John E. Hamer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240113974
    Abstract: Mobile management method, system and client. Method includes receiving a DNS query for a host name from an application on client; retrieving reputation data associated with host name from a local cache on client; and determining a policy based on host name and the reputation data. Based on determined policy for the host name, blocking attempted network flows to a host corresponding to host name to produce blocked attempted network flows. Method also includes sending attempted network flow metadata related to the blocked attempted network flows to a collector on client; transmitting the attempted network flow metadata from the collector to a VPN server pool via a VPN tunnel; and producing an anomaly report from the transmitted attempted network flow metadata. The anomaly report includes at least one of anomalies, cohorts, trends, location boundaries, detected network security issues, detected compromised clients and/or optimized network usage.
    Type: Application
    Filed: November 30, 2023
    Publication date: April 4, 2024
    Applicant: MOBILE SONIC, INC.
    Inventors: Joseph T. SAVARESE, Steven HECKT, Michael E. BRYANT, Eric C. MCNEILL, Carter SMITH, Elizabeth KIHSLINGER, Thomas Gunther HELMS, Camilla KEENAN-KOCH, Joseph G. SOUZA, Paul HOOVER, S. Aaron STAVENS, Christian E. HOFSTAEDTER, Jonathan SCOTT, Erik OLSON, James Scott SIMPKINS, Stephen Gregory FALLIN, John Harvey HILLOCK, Eivind NAESS, Michael Lee SNYDER, David Michael MIRLY, Marius LEE, Glenn Patrick ARANAS, Norman C. HAMER, Tridib DUTTA, Andrew James HOOVER, Thomas A. SWEET, Mark ANACKER, An PHAN
  • Patent number: 6703200
    Abstract: The present invention relates to a method for facilitating site directed homologous recombination in an organism to produce mutants comprising: 1) providing a large insert vector library comprising one or more large insert vectors, each of said large insert vectors comprising a piece of DNA, said DNA piece comprising multiple genes from a target organism and a first selectable marker functional for selection in bacteria; 2) providing a second vector comprising a transposable element, said transposable element comprising a nucleotide sequence coding for a second selectable marker flanked on each side by an inverted repeat sequence, wherein said selectable marker is bifunctional for selection in bacteria and the target organism and wherein said inverted repeat sequences are functional as a binding site for a transposase; 3) incubating said library with said second vector in the presence of a transposase specific for the inverted repeat sequences on the plasmid vector, such that the transposable element is tr
    Type: Grant
    Filed: September 11, 2000
    Date of Patent: March 9, 2004
    Assignee: Paradigm Genetics, Inc.
    Inventors: John E. Hamer, Lisbeth Hamer
  • Patent number: 6562624
    Abstract: The present invention relates to methods for facilitating site directed homologous recombination in a eukaryotic organism to produce genomic mutants using transposon mediated mutagenesis of cosmid vectors carrying large genomic inserts from the target eukaryotic organism. The transposon carries a bifunctional marker that can be used for selection in both bacteria and the target eukaryotic organism. Minimization of the length of the cosmid vector allows for maximization of the size of the genomic insert carried by the cosmid. Maximization of the size of the genomic insert increases the frequency of homologous recombination with the genome of the target eukaryotic organism.
    Type: Grant
    Filed: April 5, 2001
    Date of Patent: May 13, 2003
    Assignee: Paradigm Genetics, Inc.
    Inventors: Kiichi Adachi, John E. Hamer, Lisbeth Hamer
  • Publication number: 20020061593
    Abstract: The present invention relates to methods for facilitating site directed homologous recombination in a eukaryotic organism to produce genomic mutants using transposon mediated mutagenesis of cosmid vectors carrying large genomic inserts from the target eukaryotic organism. The transposon carries a bifunctional marker that can be used for selection in both bacteria and the target eukaryotic organism. Minimization of the length of the cosmid vector allows for maximization of the size of the genomic insert carried by the cosmid. Maximization of the size of the genomic insert increases the frequency of homologous recombination with the genome of the target eukaryotic organism.
    Type: Application
    Filed: April 5, 2001
    Publication date: May 23, 2002
    Inventors: Kiichi Adachi, John E. Hamer, Lisbeth Hamer
  • Patent number: 4816405
    Abstract: Vectors and procedures are provided that enable genetic manipulation of the filamentous ascomycetes such as Aspergillus nidulans and Aspergillus niger. The systems of the invention permit transformation of various Aspergillus strains as well as the production and secretion of desired foreign proteins. Also provided are cosmid vectors which enable the isolation, cloning, sequencing and modifications of genes from the filamentous ascomycetes.
    Type: Grant
    Filed: October 16, 1987
    Date of Patent: March 28, 1989
    Assignee: The Regents of the University of California
    Inventors: William E. Timberlake, John E. Hamer, M. Melanie Yelton