Patents by Inventor John E. Heebner

John E. Heebner has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20130294468
    Abstract: Spatial mode conversion modules are described, with the capability of efficiently transforming a given optical beam profile, at one plane in space into another well-defined optical beam profile at a different plane in space, whose detailed spatial features and symmetry properties can, in general, differ significantly. The modules are comprised of passive, high-efficiency, low-loss diffractive optical elements, combined with Fourier transform optics. Design rules are described that employ phase retrieval techniques and associated algorithms to determine the necessary profiles of the diffractive optical components. System augmentations are described that utilize real-time adaptive optical techniques for enhanced performance as well as power scaling.
    Type: Application
    Filed: March 8, 2013
    Publication date: November 7, 2013
    Applicant: LAWRENCE LIVERMORE NATIONAL SECURITY, LLC
    Inventors: Arun K. Sridharan, Paul H. Pax, John E. Heebner, Derrek R. Drachenberg, James P. Armstrong, Jay W. Dawson
  • Publication number: 20110170563
    Abstract: Cladding-pumped Raman fiber lasers and amplifiers provide high-efficiency conversion efficiency at high brightness enhancement. Differential loss is applied to both single-pass configurations appropriate for pulsed amplification and laser oscillator configurations applied to high average power cw source generation.
    Type: Application
    Filed: March 5, 2010
    Publication date: July 14, 2011
    Inventors: John E. Heebner, Arun K. Sridharan, Jay Walter Dawson, Michael J. Messerly, Paul H. Pax
  • Patent number: 7768649
    Abstract: In one general embodiment, a method for ultrafast optical signal detecting is provided. In operation, a first optical input signal is propagated through a first wave guiding layer of a waveguide. Additionally, a second optical input signal is propagated through a second wave guiding layer of the waveguide. Furthermore, an optical control signal is applied to a top of the waveguide, the optical control signal being oriented diagonally relative to the top of the waveguide such that the application is used to influence at least a portion of the first optical input signal propagating through the first wave guiding layer of the waveguide. In addition, the first and the second optical input signals output from the waveguide are combined. Further, the combined optical signals output from the waveguide are detected.
    Type: Grant
    Filed: August 19, 2008
    Date of Patent: August 3, 2010
    Assignee: Lawrence Livermore National Security, LLC
    Inventor: John E. Heebner
  • Publication number: 20100046001
    Abstract: In one general embodiment, a method for ultrafast optical signal detecting is provided. In operation, a first optical input signal is propagated through a first wave guiding layer of a waveguide. Additionally, a second optical input signal is propagated through a second wave guiding layer of the waveguide. Furthermore, an optical control signal is applied to a top of the waveguide, the optical control signal being oriented diagonally relative to the top of the waveguide such that the application is used to influence at least a portion of the first optical input signal propagating through the first wave guiding layer of the waveguide. In addition, the first and the second optical input signals output from the waveguide are combined. Further, the combined optical signals output from the waveguide are detected.
    Type: Application
    Filed: August 19, 2008
    Publication date: February 25, 2010
    Inventor: John E. Heebner
  • Patent number: 7587103
    Abstract: In one general embodiment, a method for deflecting an optical signal input into a waveguide is provided. In operation, an optical input signal is propagated through a waveguide. Additionally, an optical control signal is applied to a mask positioned relative to the waveguide such that the application of the optical control signal to the mask is used to influence the optical input signal propagating in the waveguide. Furthermore, the deflected optical input signal output from the waveguide is detected in parallel on an array of detectors. In another general embodiment, a beam deflecting structure is provided for deflecting an optical signal input into a waveguide, the structure comprising at least one wave guiding layer for guiding an optical input signal and at least one masking layer including a pattern configured to influence characteristics of a material of the guiding layer when an optical control signal is passed through the masking layer in a direction of the guiding layer.
    Type: Grant
    Filed: July 7, 2008
    Date of Patent: September 8, 2009
    Assignee: Lawrence Livermore National Security, LLC
    Inventor: John E. Heebner
  • Publication number: 20090016667
    Abstract: In one general embodiment, a method for deflecting an optical signal input into a waveguide is provided. In operation, an optical input signal is propagated through a waveguide. Additionally, an optical control signal is applied to a mask positioned relative to the waveguide such that the application of the optical control signal to the mask is used to influence the optical input signal propagating in the waveguide. Furthermore, the deflected optical input signal output from the waveguide is detected in parallel on an array of detectors. In another general embodiment, a beam deflecting structure is provided for deflecting an optical signal input into a waveguide, the structure comprising at least one wave guiding layer for guiding an optical input signal and at least one masking layer including a pattern configured to influence characteristics of a material of the guiding layer when an optical control signal is passed through the masking layer in a direction of the guiding layer.
    Type: Application
    Filed: July 7, 2008
    Publication date: January 15, 2009
    Inventor: John E. Heebner
  • Patent number: 7245801
    Abstract: Systems and method for manipulating optical pulses to implement an optical switch and for pulse shaping (e.g., pulse compression and/or compression) are disclosed. In one embodiment, the system comprises an optical switch apparatus that includes a plurality of resonators optically coupled to a waveguide, two output waveguides, an input light source, a control light source. The system selects some of the input signals emitted from the input light course using control signals emitted from the control light source to route to one of the output waveguides. In another embodiment, the system includes a waveguide optically coupled to a plurality of resonators, input light source, optional resonator modules that can change the refractive index of the resonators, and an optional amplifier. This system can change the shape of the pulses by changing a number of parameters, such as the incoming pulse amplitude and/or the refractive index of the resonators.
    Type: Grant
    Filed: March 21, 2003
    Date of Patent: July 17, 2007
    Assignee: University of Rochester
    Inventors: Robert W. Boyd, John E. Heebner
  • Publication number: 20040023396
    Abstract: A biosensor system includes a first optical waveguide optically coupled to a light source; a first ring or disk resonator optically coupled to the first optical waveguide; and a monitoring system that signals the presence of a biological material based on a detected change in one or more transfer characteristics of the first ring or disk resonator.
    Type: Application
    Filed: November 14, 2002
    Publication date: February 5, 2004
    Inventors: Robert W. Boyd, John E. Heebner
  • Publication number: 20030231826
    Abstract: Systems and method for manipulating optical pulses to implement an optical switch and for pulse shaping (e.g., pulse compression and/or compression) are disclosed. In one embodiment, the system comprises an optical switch apparatus that includes a plurality of resonators optically coupled to a waveguide, two output waveguides, an input light source, a control light source. The system selects some of the input signals emitted from the input light course using control signals emitted from the control light source to route to one of the output waveguides. In another embodiment, the system includes a waveguide optically coupled to a plurality of resonators, input light source, optional resonator modules that can change the refractive index of the resonators, and an optional amplifier. This system can change the shape of the pulses by changing a number of parameters, such as the incoming pulse amplitude and/or the refractive index of the resonators.
    Type: Application
    Filed: March 21, 2003
    Publication date: December 18, 2003
    Inventors: Robert W. Boyd, John E. Heebner