Patents by Inventor John Edmonds

John Edmonds has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240384183
    Abstract: A process to remove H2S from a stream comprising the steps of adding a dispersion of colloidal nanoparticles having surface functionality comprising Copper, Zinc, Iron, or Manganese, and a triazine. The stream is selected from the group consisting of Oil streams, Gas streams, CO2 point source purification streams, and Geothermal Energy System streams.
    Type: Application
    Filed: February 18, 2022
    Publication date: November 21, 2024
    Inventors: Clive COADY, Samuel James MAGUIRE-BOYLE, John Edmond SOUTHWELL
  • Publication number: 20240384118
    Abstract: Colloidal nanoparticle dispersions. wherein said nanoparticles are selected from the group consisting of silica. alumina or silica aluminate nanoparticles and wherein said nanoparticles are surface-functionalized with an organosilane having organomercaptan functionality are described and claimed. Uses for these new colloidal nanoparticle dispersions include enhancing the performance of items made with resin formulations used in Thiolene-cure UV-curable materials.
    Type: Application
    Filed: August 26, 2022
    Publication date: November 21, 2024
    Inventors: Michael Eric CARTER, Samuel MAGUIRE-BOYLE, John Edmond SOUTHWELL
  • Publication number: 20240367348
    Abstract: Silicon carbide (SiC) wafers and related methods are disclosed that include intentional or imposed wafer shapes that are configured to reduce manufacturing problems associated with deformation, bowing, or sagging of such wafers due to gravitational forces or from preexisting crystal stress. Intentional or imposed wafer shapes may comprise SiC wafers with a relaxed positive bow from silicon faces thereof. In this manner, effects associated with deformation, bowing, or sagging for SiC wafers, and in particular for large area SiC wafers, may be reduced. Related methods for providing SiC wafers with relaxed positive bow are disclosed that provide reduced kerf losses of bulk crystalline material. Such methods may include laser-assisted separation of SiC wafers from bulk crystalline material.
    Type: Application
    Filed: July 17, 2024
    Publication date: November 7, 2024
    Inventors: Simon Bubel, Matthew Donofrio, John Edmond, Ian Currier
  • Patent number: 12077712
    Abstract: A method to reduce the deposition of solid sulfur (S8(s)) in a natural gas producing well is described where hydrophobic surface modified silica nanoparticles are added into the tubing string, and the hydrophobic surface modified silica nanoparticles interact with the gaseous sulfur (S8(g)) present in the gas resulting in the reduction of the deposition of solid sulfur (S8(s)), The hydrophobic surface modified silica nanoparticles are selected from the group that includes silica, alumina and silica-aluminate. The hydrophobic surface modified silica nanoparticles may be added to the tubing string either dry or mixed first into a carrier fluid, which carrier fluid may be a liquid or a gas.
    Type: Grant
    Filed: June 1, 2021
    Date of Patent: September 3, 2024
    Assignee: Nissan Chemical America Corporation
    Inventors: John Edmond Southwell, Samuel James Maguire-Boyle
  • Patent number: 12070875
    Abstract: Silicon carbide (SiC) wafers and related methods are disclosed that include intentional or imposed wafer shapes that are configured to reduce manufacturing problems associated with deformation, bowing, or sagging of such wafers due to gravitational forces or from preexisting crystal stress. Intentional or imposed wafer shapes may comprise SiC wafers with a relaxed positive bow from silicon faces thereof. In this manner, effects associated with deformation, bowing, or sagging for SiC wafers, and in particular for large area SiC wafers, may be reduced. Related methods for providing SiC wafers with relaxed positive bow are disclosed that provide reduced kerf losses of bulk crystalline material. Such methods may include laser-assisted separation of SiC wafers from bulk crystalline material.
    Type: Grant
    Filed: April 7, 2023
    Date of Patent: August 27, 2024
    Assignee: WOLFSPEED, INC.
    Inventors: Simon Bubel, Matthew Donofrio, John Edmond, Ian Currier
  • Publication number: 20240207783
    Abstract: A process to remove H2S from a stream comprising the steps of adding Melamine cyanurate, optionally a silica nanoparticle composition, and optionally a triazine. The stream is selected from the group consisting of Oil streams, Gas streams, CO2 point source purification streams and Geothermal Energy System streams.
    Type: Application
    Filed: February 18, 2022
    Publication date: June 27, 2024
    Inventors: John Edmond SOUTHWELL, Samuel James MAGUIRE-BOYLE
  • Publication number: 20240189940
    Abstract: A crystalline material processing method includes forming subsurface laser damage at a first average depth position to form cracks in the substrate interior propagating outward from at least one subsurface laser damage pattern, followed by imaging the substrate top surface, analyzing the image to identify a condition indicative of presence of uncracked regions within the substrate, and taking one or more actions responsive to the analyzing. One potential action includes changing an instruction set for producing subsequent laser damage formation (at second or subsequent average depth positions), without necessarily forming additional damage at the first depth position. Another potential action includes forming additional subsurface laser damage at the first depth position.
    Type: Application
    Filed: January 12, 2024
    Publication date: June 13, 2024
    Inventors: Matthew Donofrio, John Edmond, Harshad Golakia, Eric Mayer
  • Patent number: 12006469
    Abstract: A method to reduce the deposition of solid sulfur (Ss(s)) in a natural gas producing well, is described wherein the inside of the pipes used in the well are coated with a coating comprising polar surface treated nanoparticles. The polar surface treated nanoparticles interact with the sulfur gas and interfere with the deposition of solid sulfur onto the surface of the pipe. The polar surface treated nanoparticles are selected from the group consisting of silica, alumina and silica-aluminate, metal sulfates and metal oxides.
    Type: Grant
    Filed: June 1, 2021
    Date of Patent: June 11, 2024
    Assignee: Nissan Chemical America Corporation
    Inventors: John Edmond Southwell, Samuel James Maguire-Boyle
  • Publication number: 20240158265
    Abstract: A process to remove H2S from a stream is described and claimed. The process comprises the steps of adding an amine-functionalized silica nanoparticle composition, and optionally a iriazine. The stream is selected from the group consisting of Oil streams, Gas streams, CO2 point source purification streams and Geothermal Energy System streams.
    Type: Application
    Filed: February 18, 2022
    Publication date: May 16, 2024
    Inventors: Samuel James MAGUIRE-BOYLE, John Edmond SOUTHWELL
  • Publication number: 20240139680
    Abstract: A process to remove H2S from a stream comprising the steps of adding a silica nanoparticle composition and optionally a triazine, wherein the stream is selected from the group consisting of Oil streams, Gas streams, CO2 point source purification streams and Geothermal Energy System streams.
    Type: Application
    Filed: February 18, 2022
    Publication date: May 2, 2024
    Inventors: Samuel James MAGUIRE-BOYLE, John Edmond SOUTHWELL
  • Publication number: 20240128085
    Abstract: A method for removing a portion of a crystalline material (e.g., SiC) substrate includes joining a surface of the substrate to a rigid carrier (e.g., >800 ?m thick), with a subsurface laser damage region provided within the substrate at a depth relative to the surface. Adhesive material having a glass transition temperature above 25° C. may bond the substrate to the carrier. The crystalline material is fractured along the subsurface laser damage region to produce a bonded assembly including the carrier and a portion of the crystalline material. Fracturing of the crystalline material may be promoted by (i) application of a mechanical force proximate to at least one carrier edge to impart a bending moment in the carrier; (ii) cooling the carrier when the carrier has a greater coefficient of thermal expansion than the crystalline material; and/or (iii) applying ultrasonic energy to the crystalline material.
    Type: Application
    Filed: December 22, 2023
    Publication date: April 18, 2024
    Inventors: Matthew Donofrio, John Edmond, Hua-Shuang Kong, Elif Balkas
  • Patent number: 11911842
    Abstract: A crystalline material processing method includes forming subsurface laser damage at a first average depth position to form cracks in the substrate interior propagating outward from at least one subsurface laser damage pattern, followed by imaging the substrate top surface, analyzing the image to identify a condition indicative of presence of uncracked regions within the substrate, and taking one or more actions responsive to the analyzing. One potential action includes changing an instruction set for producing subsequent laser damage formation (at second or subsequent average depth positions), without necessarily forming additional damage at the first depth position. Another potential action includes forming additional subsurface laser damage at the first depth position.
    Type: Grant
    Filed: January 10, 2022
    Date of Patent: February 27, 2024
    Assignee: WOLFSPEED, INC.
    Inventors: Matthew Donofrio, John Edmond, Harshad Golakia, Eric Mayer
  • Patent number: 11901181
    Abstract: A method for removing a portion of a crystalline material (e.g., SiC) substrate includes joining a surface of the substrate to a rigid carrier (e.g., >800 ?m thick), with a subsurface laser damage region provided within the substrate at a depth relative to the surface. Adhesive material having a glass transition temperature above 25° C. may bond the substrate to the carrier. The crystalline material is fractured along the subsurface laser damage region to produce a bonded assembly including the carrier and a portion of the crystalline material. Fracturing of the crystalline material may be promoted by (i) application of a mechanical force proximate to at least one carrier edge to impart a bending moment in the carrier; (ii) cooling the carrier when the carrier has a greater coefficient of thermal expansion than the crystalline material; and/or (iii) applying ultrasonic energy to the crystalline material.
    Type: Grant
    Filed: April 8, 2021
    Date of Patent: February 13, 2024
    Assignee: WOLFSPEED, INC.
    Inventors: Matthew Donofrio, John Edmond, Hua-Shuang Kong, Elif Balkas
  • Publication number: 20240042382
    Abstract: A process to remove H2S from a stream comprising the steps of adding a glyoxal, a silica nanoparticle composition, and optionally a triazine to the stream. The stream is selected from the group consisting of Oil streams, Gas streams, CO2 point source purification streams and Geothermal Energy System streams.
    Type: Application
    Filed: February 18, 2022
    Publication date: February 8, 2024
    Inventors: John Edmond SOUTHWELL, Samuel James MAGUIRE-BOYLE
  • Patent number: 11826846
    Abstract: A method for processing a crystalline substrate to form multiple patterns of subsurface laser damage facilitates subsequent fracture of the substrate to yield first and second substrate portions of reduced thickness. Multiple (e.g., two, three, or more) groups of parallel lines of multiple subsurface laser damage patterns may be sequentially interspersed with one another, with at least some lines of different groups not crossing one another. Certain implementations include formation of multiple subsurface laser damage patterns including groups of parallel lines that are non-parallel to one another, but with each line remaining within ±5 degrees of perpendicular to the <1120> direction of a hexagonal crystal structure of a material of the substrate.
    Type: Grant
    Filed: June 23, 2020
    Date of Patent: November 28, 2023
    Assignee: WOLFSPEED, INC.
    Inventors: Matthew Donofrio, John Edmond, Harshad Golakia
  • Patent number: 11776938
    Abstract: At least one array of LEDs (e.g., in a flip chip configuration) is supported by a substrate having a light extraction surface overlaid with at least one lumiphoric material. Light segregation elements registered with gaps between LEDs are configured to reduce interaction between emissions of different LEDs and/or lumiphoric material regions to reduce scattering and/or optical crosstalk, thereby preserving pixel-like resolution of the resulting emissions. Light segregation elements may be formed by mechanical sawing or etching to define grooves or recesses in a substrate, and filling the grooves or recesses with light-reflective or light-absorptive material. Light segregation elements external to a substrate may be defined by photolithographic patterning and etching of a sacrificial material, and/or by 3D printing.
    Type: Grant
    Filed: May 10, 2022
    Date of Patent: October 3, 2023
    Assignee: CREELED, INC.
    Inventors: John Edmond, Matthew Donofrio, Jesse Reiherzer, Peter Scott Andrews, Joseph G. Clark, Kevin Haberern
  • Publication number: 20230241803
    Abstract: Silicon carbide (SiC) wafers and related methods are disclosed that include intentional or imposed wafer shapes that are configured to reduce manufacturing problems associated with deformation, bowing, or sagging of such wafers due to gravitational forces or from preexisting crystal stress. Intentional or imposed wafer shapes may comprise SiC wafers with a relaxed positive bow from silicon faces thereof. In this manner, effects associated with deformation, bowing, or sagging for SiC wafers, and in particular for large area SiC wafers, may be reduced. Related methods for providing SiC wafers with relaxed positive bow are disclosed that provide reduced kerf losses of bulk crystalline material. Such methods may include laser-assisted separation of SiC wafers from bulk crystalline material.
    Type: Application
    Filed: April 7, 2023
    Publication date: August 3, 2023
    Inventors: Simon Bubel, Matthew Donofrio, John Edmond, Ian Currier
  • Publication number: 20230227711
    Abstract: A method to reduce the deposition of solid sulfur (Ss(s)) in a natural gas producing well, is described wherein the inside of the pipes used in the well are coated with a coating comprising polar surface treated nanoparticles. The polar surface treated nanoparticles interact with the sulfur gas and interfere with the deposition of solid sulfur onto the surface of the pipe. The polar surface treated nanoparticles are selected from the group consisting of silica, alumina and silica-aluminate, metal sulfates and metal oxides.
    Type: Application
    Filed: June 1, 2021
    Publication date: July 20, 2023
    Inventors: John Edmond SOUTHWELL, Samuel James MAGUIRE-BOYLE
  • Publication number: 20230220269
    Abstract: A method to reduce the deposition of solid sulfur (S8(s)) in a natural gas producing well is described where hydrophobic surface modified silica nanoparticles are added into the tubing string, and the hydrophobic surface modified silica nanoparticles interact with the gaseous sulfur (S8(g)) present in the gas resulting in the reduction of the deposition of solid sulfur (S8(s)), The hydrophobic surface modified silica nanoparticles are selected from the group that includes silica, alumina and silica-aluminate. The hydrophobic surface modified silica nanoparticles may be added to the tubing string either dry or mixed first into a carrier fluid, which carrier fluid may be a liquid or a gas.
    Type: Application
    Filed: June 1, 2021
    Publication date: July 13, 2023
    Inventors: John Edmond SOUTHWELL, Samuel James MAGUIRE-BOYLE
  • Patent number: 11654596
    Abstract: Silicon carbide (SiC) wafers and related methods are disclosed that include intentional or imposed wafer shapes that are configured to reduce manufacturing problems associated with deformation, bowing, or sagging of such wafers due to gravitational forces or from preexisting crystal stress. Intentional or imposed wafer shapes may comprise SiC wafers with a relaxed positive bow from silicon faces thereof. In this manner, effects associated with deformation, bowing, or sagging for SiC wafers, and in particular for large area SiC wafers, may be reduced. Related methods for providing SiC wafers with relaxed positive bow are disclosed that provide reduced kerf losses of bulk crystalline material. Such methods may include laser-assisted separation of SiC wafers from bulk crystalline material.
    Type: Grant
    Filed: February 18, 2021
    Date of Patent: May 23, 2023
    Assignee: WOLFSPEED, INC.
    Inventors: Simon Bubel, Matthew Donofrio, John Edmond, Ian Currier