Patents by Inventor John Ernest Harden, Jr.

John Ernest Harden, Jr. has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11243408
    Abstract: A speckle reduction system is provided and includes a speckle reduction component and a control module. The speckle reduction component includes electrode layers and a liquid crystal layer. The liquid crystal layer is disposed between the electrode layers and configured to receive light from a coherent light source. The control module is configured to (i) supply a first voltage signal having a first voltage to the electrode layers to provide a first speckle pattern output, and (ii) supply a second voltage signal having a second voltage to the electrode layers to provide a second speckle pattern output, wherein the first voltage and the second voltage are greater than zero. The control module is configured to transition between providing the first voltage signal and the second voltage signal in less than at least one of half an integration time of a human eye or 8 milliseconds.
    Type: Grant
    Filed: February 5, 2020
    Date of Patent: February 8, 2022
    Assignees: GM GLOBAL TECHNOLOGY OPERATIONS LLC, KENT STATE UNIVERSITY
    Inventors: John Ernest Harden, Jr., Liang-Chy Chien, Kai-Han Chang, Thomas A. Seder
  • Publication number: 20210239996
    Abstract: A speckle reduction system is provided and includes a speckle reduction component and a control module. The speckle reduction component includes electrode layers and a liquid crystal layer. The liquid crystal layer is disposed between the electrode layers and configured to receive light from a coherent light source. The control module is configured to (i) supply a first voltage signal having a first voltage to the electrode layers to provide a first speckle pattern output, and (ii) supply a second voltage signal having a second voltage to the electrode layers to provide a second speckle pattern output, wherein the first voltage and the second voltage are greater than zero. The control module is configured to transition between providing the first voltage signal and the second voltage signal in less than at least one of half an integration time of a human eye or 8 milliseconds.
    Type: Application
    Filed: February 5, 2020
    Publication date: August 5, 2021
    Inventors: John Ernest HARDEN, JR., Liang-Chy CHIEN, Kai-Han CHANG, Thomas A. SEDER
  • Patent number: 9416487
    Abstract: A piezoelectric device includes a fiber mat comprising polymer fibers with ferroelectric particles embedded in the polymer fibers. The ferroelectric particles are oriented to generate a net polarization in the fiber mat. The ferroelectric particles may comprise barium titanate particles. The polymer fibers may comprise polylactic acid (PLA) fibers. The piezoelectric device may further include substrates sandwiching the fiber mat, and the fiber mat may be formed by electrospinning polymer fibers containing ferroelectric particles onto one of the substrates. The piezoelectric device may be a piezoelectric actuator configured to receive an input voltage applied across the fiber mat and to output a mechanical displacement in response to the voltage, or the piezoelectric device may be configured to output a voltage in response to a mechanical force applied to the fiber mat.
    Type: Grant
    Filed: October 11, 2013
    Date of Patent: August 16, 2016
    Assignee: Kent State University
    Inventors: Antal I. Jakli, Ebru Aylin Buyuktanir, John L. West, Jason Morvan, John Ernest Harden, Jr.
  • Publication number: 20150102704
    Abstract: A piezoelectric device includes a fiber mat comprising polymer fibers with ferroelectric particles embedded in the polymer fibers. The ferroelectric particles are oriented to generate a net polarization in the fiber mat. The ferroelectric particles may comprise barium titanate particles. The polymer fibers may comprise polylactic acid (PLA) fibers. The piezoelectric device may further include substrates sandwiching the fiber mat, and the fiber mat may be formed by electrospinning polymer fibers containing ferroelectric particles onto one of the substrates. The piezoelectric device may be a piezoelectric actuator configured to receive an input voltage applied across the fiber mat and to output a mechanical displacement in response to the voltage, or the piezoelectric device may be configured to output a voltage in response to a mechanical force applied to the fiber mat.
    Type: Application
    Filed: October 11, 2013
    Publication date: April 16, 2015
    Applicant: KENT STATE UNIVERSITY
    Inventors: Antal I. Jakli, Ebru Aylin Buyuktanir, John L. West, Jason Morvan, John Ernest Harden, JR.
  • Patent number: 8595923
    Abstract: There are provided methods for creating energy conversion devices based on the giant flexoelectric effect in non-calamitic liquid crystals. By preparing a substance comprising at least one type of non-calamitic liquid crystal molecules and stabilizing the substance to form a mechanically flexible material, flexible conductive electrodes may be applied to the material to create an electro-mechanical energy conversion device which relies on the giant flexoelectric effect to produce electrical and/or mechanical energy that is usable in such applications as, for example, power sources, energy dissipation, sensors/transducers, and actuators.
    Type: Grant
    Filed: March 19, 2010
    Date of Patent: December 3, 2013
    Assignee: Kent State University
    Inventors: Antal I. Jakli, John Ernest Harden, Jr., Samuel Sprunt, James T. Gleeson, Peter Palffy-Muhoray
  • Publication number: 20110309305
    Abstract: A conductive, durable, peelable and flexible polymeric composition such as a coating can be utilized as an electrode sheet or substrate for organic and polymer light emitting diodes, for organic transistors, medical electrodes, and the like. The conductive polymeric composition is a blend of a conductive polymer blend and a peelable polymer blend wherein the conductive polymer comprises a negative-charged accepting polymer and a positive-charged accepting polymer and wherein the peelable polymer blend comprises a water soluble polymer, a polyalkylene oxide, and an alkyl glycol.
    Type: Application
    Filed: October 19, 2010
    Publication date: December 22, 2011
    Applicant: KENT STATE UNIVERSITY
    Inventors: Antal Istvan Jákli, John Ernest Harden, JR., Wilder G. Iglesias Gonzalez
  • Patent number: 8035279
    Abstract: There are provided methods for creating energy conversion devices based on the giant flexoelectric effect in non-calamitic liquid crystals. By preparing a substance comprising at least one type of non-calamitic liquid crystal molecules and stabilizing the substance to form a mechanically flexible material, flexible conductive electrodes may be applied to the material to create an electro-mechanical energy conversion device which relies on the giant flexoelectric effect to produce electrical and/or mechanical energy that is usable in such applications as, for example, power sources, energy dissipation, sensors/transducers, and actuators.
    Type: Grant
    Filed: March 19, 2010
    Date of Patent: October 11, 2011
    Assignee: Kent State University
    Inventors: Antal I. Jakli, John Ernest Harden, Jr., Samuel Sprunt, James T. Gleeson, Peter Palffy-Muhoray
  • Patent number: 7832093
    Abstract: There are provided methods for creating energy conversion devices based on the giant flexoelectric effect in non-calamitic liquid crystals. By preparing a substance comprising at least one type of non-calamitic liquid crystal molecules and stabilizing the substance to form a mechanically flexible material, flexible conductive electrodes may be applied to the material to create an electro-mechanical energy conversion device which relies on the giant flexoelectric effect to produce electrical and/or mechanical energy that is usable in such applications as, for example, power sources, energy dissipation, sensors/transducers, and actuators.
    Type: Grant
    Filed: June 11, 2007
    Date of Patent: November 16, 2010
    Assignee: Kent State University
    Inventors: Antal I. Jakli, John Ernest Harden, Jr., Samuel Sprunt, James T. Gleeson, Peter Palffy-Muhoray
  • Publication number: 20100207493
    Abstract: There are provided methods for creating energy conversion devices based on the giant flexoelectric effect in non-calamitic liquid crystals. By preparing a substance comprising at least one type of non-calamitic liquid crystal molecules and stabilizing the substance to form a mechanically flexible material, flexible conductive electrodes may be applied to the material to create an electro-mechanical energy conversion device which relies on the giant flexoelectric effect to produce electrical and/or mechanical energy that is usable in such applications as, for example, power sources, energy dissipation, sensors/transducers, and actuators.
    Type: Application
    Filed: March 19, 2010
    Publication date: August 19, 2010
    Applicant: KENT STATE UNIVERSITY
    Inventors: Antal I. Jakli, John Ernest Harden, JR., Samuel Sprunt, James T. Gleeson
  • Publication number: 20100182026
    Abstract: There are provided methods for creating energy conversion devices based on the giant flexoelectric effect in non-calamitic liquid crystals. By preparing a substance comprising at least one type of non-calamitic liquid crystal molecules and stabilizing the substance to form a mechanically flexible material, flexible conductive electrodes may be applied to the material to create an electro-mechanical energy conversion device which relies on the giant flexoelectric effect to produce electrical and/or mechanical energy that is usable in such applications as, for example, power sources, energy dissipation, sensors/transducers, and actuators.
    Type: Application
    Filed: March 19, 2010
    Publication date: July 22, 2010
    Applicant: KENT STATE UNIVERSITY
    Inventors: Antal I. Jakli, John Ernest Harden, JR., Samuel Sprunt, James T. Gleeson
  • Publication number: 20080303376
    Abstract: Devices and methods for energy conversion based on the giant flexoelectric effect in non-calamitic liquid crystals. By preparing a substance comprising at least one type of non-calamitic liquid crystal molecules and stabilizing the substance to form a mechanically flexible material, flexible conductive electrodes may be applied to the material to create an electro-mechanical energy conversion device which relies on the giant flexoelectric effect to produce electrical and/or mechanical energy that is usable in such applications as, for example, power sources, energy dissipation, sensors/transducers, and actuators. The ability to directly and accurately measure the giant flexoelectric effect for different types of non-calamitic liquid crystal molecules is important for identifying molecules that may be effective for particular applications.
    Type: Application
    Filed: June 11, 2007
    Publication date: December 11, 2008
    Applicant: KENT STATE UNIVERSITY
    Inventors: Antal I. JAKLI, John Ernest HARDEN, Jr., Samuel SPRUNT, James T. GLEESON