Patents by Inventor John F. Carlson
John F. Carlson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 11986179Abstract: Devices and methods for minimally invasive suturing are disclosed. One suturing device for minimally invasive suturing includes a proximal section a distal end, and an intermediate region therebetween. The device includes a suture head assembly having a suturing needle with a pointed end and a second end. The suturing needle is capable of rotating about an axis approximately perpendicular to a longitudinal axis of the device, wherein the pointed end of the suturing needle is positioned within the suture head assembly prior to deployment of guides that are adapted and configured to guide the needle around a circular path when advanced by a drive mechanism having a needle driver for engaging and rotating the suturing needle.Type: GrantFiled: November 22, 2020Date of Patent: May 21, 2024Assignee: Intuitive Surgical Operations, Inc.Inventors: Gerald I. Brecher, John C. Meade, John Aho, Roger Baske, James H. Bleck, John F Carlson, Thomas Eagan, Michael J. Helander, James W. Murray, Ashley Perkins, Wayne A. Shakal, Jonathan Towle
-
Publication number: 20240050086Abstract: Devices and methods for minimally invasive suturing are disclosed. One suturing device for minimally invasive suturing includes a proximal section a distal end, and an intermediate region therebetween. The device includes a suture head assembly having a suturing needle with a pointed end and a second end. The suturing needle is capable of rotating about an axis approximately perpendicular to a longitudinal axis of the device, wherein the pointed end of the suturing needle is positioned within the suture head assembly prior to deployment of guides that are adapted and configured to guide the needle around a circular path when advanced by a drive mechanism having a needle driver for engaging and rotating the suturing needle.Type: ApplicationFiled: October 20, 2023Publication date: February 15, 2024Inventors: Gerald I. Brecher, John C. Meade, John Aho, Roger Baske, James H. Bleck, John F. Carlson, Thomas Eagan, Michael J. Helander, James W. Murray, Ashley Perkins, Wayne A. Shakal, Jonathan Towle
-
Publication number: 20210161522Abstract: Devices and methods for minimally invasive suturing are disclosed. One suturing device for minimally invasive suturing includes a proximal section a distal end, and an intermediate region therebetween. The device includes a suture head assembly having a suturing needle with a pointed end and a second end. The suturing needle is capable of rotating about an axis approximately perpendicular to a longitudinal axis of the device, wherein the pointed end of the suturing needle is positioned within the suture head assembly prior to deployment of guides that are adapted and configured to guide the needle around a circular path when advanced by a drive mechanism having a needle driver for engaging and rotating the suturing needle.Type: ApplicationFiled: November 22, 2020Publication date: June 3, 2021Inventors: Gerald I. Brecher, John C. Meade, John Aho, Roger Baske, James H. Bleck, John F. Carlson, Thomas Eagan, Michael J. Helander, James W. Murray, Ashley Perkins, Wayne A. Shakal, Jonathan Towle
-
Patent number: 10881392Abstract: Devices and methods for minimally invasive suturing are disclosed. One suturing device for minimally invasive suturing includes a proximal section a distal end, and an intermediate region therebetween. The device includes a suture head assembly having a suturing needle with a pointed end and a second end. The suturing needle is capable of rotating about an axis approximately perpendicular to a longitudinal axis of the device, wherein the pointed end of the suturing needle is positioned within the suture head assembly prior to deployment of guides that are adapted and configured to guide the needle around a circular path when advanced by a drive mechanism having a needle driver for engaging and rotating the suturing needle.Type: GrantFiled: December 31, 2018Date of Patent: January 5, 2021Assignee: Intuitive Surgical Operations, Inc.Inventors: Gerald I. Brecher, John C. Meade, John Aho, Roger Baske, James H. Bleck, John F. Carlson, Thomas Eagan, Michael J. Helander, James W. Murray, Ashley Perkins, Wayne A. Shakal, Jonathan Towle
-
Patent number: 10792031Abstract: Devices and methods for minimally invasive suturing are disclosed. One suturing device for minimally invasive suturing includes a proximal section a distal end, and an intermediate region therebetween. The device includes a suture head assembly having a suturing needle with a pointed end and a second end. The suturing needle is capable of rotating about an axis approximately perpendicular to a longitudinal axis of the device, wherein the pointed end of the suturing needle is positioned within the suture head assembly prior to deployment of guides that are adapted and configured to guide the needle around a circular path when advanced by a drive mechanism having a needle driver for engaging and rotating the suturing needle.Type: GrantFiled: March 31, 2018Date of Patent: October 6, 2020Assignee: Intuitive Surgical Operations, Inc.Inventors: Gerald I. Brecher, John C. Meade, John Aho, Roger Baske, James H. Bleck, John F. Carlson, Thomas Eagan, Michael J. Helander, James W. Murray, Ashley Perkins, Wayne A. Shakal, Jonathan Towle
-
Publication number: 20190209161Abstract: Devices and methods for minimally invasive suturing are disclosed. One suturing device for minimally invasive suturing includes a proximal section a distal end, and an intermediate region therebetween. The device includes a suture head assembly having a suturing needle with a pointed end and a second end. The suturing needle is capable of rotating about an axis approximately perpendicular to a longitudinal axis of the device, wherein the pointed end of the suturing needle is positioned within the suture head assembly prior to deployment of guides that are adapted and configured to guide the needle around a circular path when advanced by a drive mechanism having a needle driver for engaging and rotating the suturing needle.Type: ApplicationFiled: December 31, 2018Publication date: July 11, 2019Inventors: Gerald I. Brecher, John C. Meade, John Aho, Roger Baske, James H. Bleck, John F. Carlson, Thomas Eagan, Michael J. Helander, James W. Murray, Ashley Perkins, Wayne A. Shakal, Jonathan Towle
-
Publication number: 20180256156Abstract: Devices and methods for minimally invasive suturing are disclosed. One suturing device for minimally invasive suturing includes a proximal section a distal end, and an intermediate region therebetween. The device includes a suture head assembly having a suturing needle with a pointed end and a second end. The suturing needle is capable of rotating about an axis approximately perpendicular to a longitudinal axis of the device, wherein the pointed end of the suturing needle is positioned within the suture head assembly prior to deployment of guides that are adapted and configured to guide the needle around a circular path when advanced by a drive mechanism having a needle driver for engaging and rotating the suturing needle.Type: ApplicationFiled: March 31, 2018Publication date: September 13, 2018Inventors: Gerald I. Brecher, John C. Meade, John Aho, Roger Baske, James H. Bleck, John F. Carlson, Thomas Eagan, Michael J. Helander, James W. Murray, Ashley Perkins, Wayne A. Shakal, Jonathan Towle
-
Patent number: 9962151Abstract: Devices and methods for minimally invasive suturing are disclosed. One suturing device for minimally invasive suturing includes a proximal section a distal end, and an intermediate region therebetween. The device includes a suture head assembly having a suturing needle with a pointed end and a second end. The suturing needle is capable of rotating about an axis approximately perpendicular to a longitudinal axis of the device, wherein the pointed end of the suturing needle is positioned within the suture head assembly prior to deployment of guides that are adapted and configured to guide the needle around a circular path when advanced by a drive mechanism having a needle driver for engaging and rotating the suturing needle.Type: GrantFiled: May 31, 2017Date of Patent: May 8, 2018Assignee: EndoEvolution, LLCInventors: Gerald I. Brecher, John C. Meade, John Aho, Roger Baske, James H. Bleck, John F. Carlson, Thomas Eagan, Michael J. Helander, James W. Murray, Ashley Perkins, Wayne A. Shakal, Jonathan Towle
-
Patent number: 9775600Abstract: Devices and methods for minimally invasive suturing are disclosed. One suturing device for minimally invasive suturing includes a proximal section a distal end, and an intermediate region therebetween. The device includes a suture head assembly having a suturing needle with a pointed end and a second end. The suturing needle is capable of rotating about an axis approximately perpendicular to a longitudinal axis of the device, wherein the pointed end of the suturing needle is positioned within the suture head assembly prior to deployment of guides that are adapted and configured to guide the needle around a circular path when advanced by a drive mechanism having a needle driver for engaging and rotating the suturing needle.Type: GrantFiled: August 8, 2011Date of Patent: October 3, 2017Assignee: EndoEvolution, LLCInventors: Gerald I. Brecher, John C. Meade, John Aho, Roger Baske, James H. Bleck, John F. Carlson, Thomas Eagan, Michael J. Helander, James W. Murray, Ashley Perkins, Wayne A. Shakal, Jonathan Towle
-
Publication number: 20170265855Abstract: Devices and methods for minimally invasive suturing are disclosed. One suturing device for minimally invasive suturing includes a proximal section a distal end, and an intermediate region therebetween. The device includes a suture head assembly having a suturing needle with a pointed end and a second end. The suturing needle is capable of rotating about an axis approximately perpendicular to a longitudinal axis of the device, wherein the pointed end of the suturing needle is positioned within the suture head assembly prior to deployment of guides that are adapted and configured to guide the needle around a circular path when advanced by a drive mechanism having a needle driver for engaging and rotating the suturing needle.Type: ApplicationFiled: May 31, 2017Publication date: September 21, 2017Inventors: Gerald I. Brecher, John C. Meade, John Aho, Roger Baske, James H. Bleck, John F. Carlson, Thomas Eagan, Michael J. Helander, James W. Murray, Ashley Perkins, Wayne A. Shakal, Jonathan Towle
-
Patent number: 9675339Abstract: Devices and methods for minimally invasive suturing are disclosed. One suturing device for minimally invasive suturing includes a proximal section a distal end, and an intermediate region therebetween. The device includes a suture head assembly having a suturing needle with a pointed end and a second end. The suturing needle is capable of rotating about an axis approximately perpendicular to a longitudinal axis of the device, wherein the pointed end of the suturing needle is positioned within the suture head assembly prior to deployment of guides that are adapted and configured to guide the needle around a circular path when advanced by a drive mechanism having a needle driver for engaging and rotating the suturing needle.Type: GrantFiled: December 13, 2016Date of Patent: June 13, 2017Assignee: EndoEvolution, LLCInventors: Gerald I. Brecher, John C. Meade, John Aho, Roger Baske, James H. Bleck, John F. Carlson, Thomas Eagan, Michael J. Helander, James W. Murray, Ashley Perkins, Wayne A. Shakal, Jonathan Towle
-
Publication number: 20170105723Abstract: Devices and methods for minimally invasive suturing are disclosed. One suturing device for minimally invasive suturing includes a proximal section a distal end, and an intermediate region therebetween. The device includes a suture head assembly having a suturing needle with a pointed end and a second end. The suturing needle is capable of rotating about an axis approximately perpendicular to a longitudinal axis of the device, wherein the pointed end of the suturing needle is positioned within the suture head assembly prior to deployment of guides that are adapted and configured to guide the needle around a circular path when advanced by a drive mechanism having a needle driver for engaging and rotating the suturing needle.Type: ApplicationFiled: December 13, 2016Publication date: April 20, 2017Inventors: Gerald I. Brecher, John C. Meade, John Aho, Roger Baske, James H. Bleck, John F. Carlson, Thomas Eagan, Michael J. Helander, James W. Murray, Ashley Perkins, Wayne A. Shakal, Jonathan Towle
-
Publication number: 20120143248Abstract: Devices and methods for minimally invasive suturing are disclosed. One suturing device for minimally invasive suturing includes a proximal section a distal end, and an intermediate region therebetween. The device includes a suture head assembly having a suturing needle with a pointed end and a second end. The suturing needle is capable of rotating about an axis approximately perpendicular to a longitudinal axis of the device, wherein the pointed end of the suturing needle is positioned within the suture head assembly prior to deployment of guides that are adapted and configured to guide the needle around a circular path when advanced by a drive mechanism having a needle driver for engaging and rotating the suturing needle.Type: ApplicationFiled: August 8, 2011Publication date: June 7, 2012Inventors: Gerald I. Brecher, John C. Meade, John Aho, Roger Baske, James H. Bleck, John F. Carlson, Thomas Eagan, Michael J. Helander, James W. Murray, Ashley Perkins, Wayne A. Shakal, Jonathan Towle
-
Patent number: 7993354Abstract: Devices and methods for minimally invasive suturing are disclosed. One suturing device for minimally invasive suturing includes a proximal section a distal end, and an intermediate region therebetween. The device includes a suture head assembly having a suturing needle with a pointed end and a second end. The suturing needle is capable of rotating about an axis approximately perpendicular to a longitudinal axis of the device, wherein the pointed end of the suturing needle is positioned within the suture head assembly prior to deployment of guides that are adapted and configured to guide the needle around a circular path when advanced by a drive mechanism having a needle driver for engaging and rotating the suturing needle.Type: GrantFiled: October 21, 2010Date of Patent: August 9, 2011Assignee: EndoEvolution, LLCInventors: Gerald I. Brecher, John C. Meade, John Aho, Roger Baske, James H. Bleck, John F. Carlson, Thomas Eagan, Michael J. Helander, James W. Murray, Ashley Perkins, Wayne A. Shakal, Jonathan Towle
-
Patent number: 7247205Abstract: An apparatus for applying powder coating material onto large objects such as automotive, truck or other vehicle bodies includes a powder spray booth defining a controlled area within which to apply powder coating material onto the vehicle bodies, a powder kitchen located at a remote position from the powder spray booth, and, a number of feed hoppers located proximate the booth which receive powder coating material from the powder kitchen and supply it to automatically or manually manipulated powder spray guns associated with the booth. Oversprayed powder coating material is removed from the booth interior by a powder collection and recovery system which transmits the oversprayed powder back to the powder kitchen for recirculation to the powder spray guns.Type: GrantFiled: May 22, 2006Date of Patent: July 24, 2007Assignee: Nordson CorporationInventors: Jeffrey R. Shutic, John F. Carlson, Thomas E. Hollstein, Keith E. Williams, Ernest J. Fena, Harry J. Lader
-
Patent number: 7166164Abstract: An apparatus for applying powder coating material onto large objects such as automotive, truck or other vehicle bodies includes a powder spray booth defining a controlled area within which to apply powder coating material onto the vehicle bodies, a powder kitchen located at a remote position from the powder spray booth, and, a number of feed hoppers located proximate the booth which receive powder coating material from the powder kitchen and supply it to automatically or manually manipulated powder spray guns associated with the booth. Oversprayed powder coating material is removed from the booth interior by a powder collection and recovery system which transmits the oversprayed powder back to the powder kitchen for recirculation to the powder spray guns.Type: GrantFiled: June 27, 2005Date of Patent: January 23, 2007Assignee: Nordson CorporationInventors: Jeffrey R. Shutic, John F. Carlson, Thomas E. Hollstein, Keith E. Williams, Ernest J. Fena, Harry J. Lader
-
Patent number: 6929698Abstract: An apparatus for applying powder coating material onto large objects such as automotive, truck or other vehicle bodies includes a powder spray booth defining a controlled area within which to apply powder coating material onto the vehicle bodies, a powder kitchen located at a remote position from the powder spray booth, and, a number of feed hoppers located proximate the booth which receive powder coating material from the powder kitchen and supply it to automatically or manually manipulated powder spray guns associated with the booth. Oversprayed powder coating material is removed from the booth interior by a powder collection and recovery system which transmits the oversprayed powder back to the powder kitchen for recirculation to the powder spray guns.Type: GrantFiled: January 7, 2004Date of Patent: August 16, 2005Assignee: Nordson CorporationInventors: Jeffrey R. Shutic, John F. Carlson, Thomas E. Hollstein, Keith E. Williams, Ernest J. Fena, Harry J. Lader
-
Publication number: 20040137144Abstract: An apparatus for applying powder coating material onto large objects such as automotive, truck or other vehicle bodies includes a powder spray booth defining a controlled area within which to apply powder coating material onto the vehicle bodies, a powder kitchen located at a remote position from the powder spray booth, and, a number of feed hoppers located proximate the booth which receive powder coating material from the powder kitchen and supply it to automatically or manually manipulated powder spray guns associated with the booth. Oversprayed powder coating material is removed from the booth interior by a powder collection and recovery system which transmits the oversprayed powder back to the powder kitchen for recirculation to the powder spray guns.Type: ApplicationFiled: January 7, 2004Publication date: July 15, 2004Inventors: Jeffrey R. Shutic, John F. Carlson, Thomas E. Hollstein, Keith E. Williams, Ernest J. Fena, Harry J. Lader
-
Patent number: 6679193Abstract: An apparatus for applying powder coating material onto large objects such as automotive, truck or other vehicle bodies includes a powder spray booth defining a controlled area within which to apply powder coating material onto the vehicle bodies, a powder kitchen located at a remote position from the powder spray booth, and, a number of feed hoppers located proximate the booth which receive powder coating material from the powder kitchen and supply it to automatically or manually manipulated powder spray guns associated with the booth. Oversprayed powder coating material is removed from the booth interior by a powder collection and recovery system which transmits the oversprayed powder back to the powder kitchen for recirculation to the powder spray guns.Type: GrantFiled: January 8, 2002Date of Patent: January 20, 2004Assignee: Nordson CorporationInventors: Jeffrey R. Shutic, John F. Carlson, Thomas E. Hollstein, Keith E. Williams, Ernest J. Fena, Harry J. Lader
-
Publication number: 20020096111Abstract: An apparatus for applying powder coating material onto large objects such as automotive, truck or other vehicle bodies includes a powder spray booth defining a controlled area within which to apply powder coating material onto the vehicle bodies, a powder kitchen located at a remote position from the powder spray booth, and, a number of feed hoppers located proximate the booth which receive powder coating material from the powder kitchen and supply it to automatically or manually manipulated powder spray guns associated with the booth. Oversprayed powder coating material is removed from the booth interior by a powder collection and recovery system which transmits the oversprayed powder back to the powder kitchen for recirculation to the powder spray guns.Type: ApplicationFiled: January 8, 2002Publication date: July 25, 2002Inventors: Jeffrey R. Shutic, John F. Carlson, Thomas E. Hollstein, Keith E. Williams, Ernest J. Fena, Harry J. Lader