Patents by Inventor John F. Judge

John F. Judge has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10174977
    Abstract: A system including a setpoint module, a summer, a control module, and an expansion valve module. The setpoint module is configured to indirectly control sub-cooling of a condenser by adjusting a superheat setpoint based on (i) a return air temperature setpoint or a supply air temperature setpoint, and (ii) an outdoor ambient temperature. The summer is configured to determine an error between the superheat setpoint and a superheat level of a compressor. The control module is configured to generate a control signal based on the error. The expansion valve module is configured to electronically control a state of an expansion valve based on the control signal.
    Type: Grant
    Filed: October 15, 2014
    Date of Patent: January 8, 2019
    Assignee: Vertiv Corporation
    Inventors: Zhiyong Lin, Benedict J. Dolcich, John F. Judge
  • Patent number: 9980413
    Abstract: A cooling system has a cabinet and a plurality of separate cooling stages including an upstream cooling stage and a downstream cooling stage. At least the upstream cooling state is a variable capacity cooling stage. Each cooling stage has a cooling circuit. Evaporators of the cooling circuits are arranged in the cabinet so that air passes over them in serial fashion. A controller when a Call for Cooling first reaches a point where cooling is needed, operating the upstream cooling circuit to provide cooling and not the downstream cooling circuit. When the Call for Cooling has increased to a second point, the controller additionally operates the downstream cooling circuit to provide cooling. The cooling capacity at which the upstream cooling circuit is being operated is less than its full capacity when the Call for Cooling reaches the second point.
    Type: Grant
    Filed: April 22, 2015
    Date of Patent: May 22, 2018
    Assignee: Liebert Corporation
    Inventors: John F. Judge, Timothy J. Schrader, Stephen Sillato, Roger Noll, Gary A. Helmink, Pierpaolo Barbato, Giuseppe Dalla Mana, Lou Monnier, Zhiyong Lin, Benedict J. Dolcich, Daniel J. Schutte, Greg Haggy
  • Patent number: 9845981
    Abstract: A cooling system has a direct expansion mode and a pumped refrigerant economizer mode and a controller. The controller includes a load estimator that estimates real-time indoor load on the cooling system and uses the estimated real-time indoor load to determine whether to operate the cooling system in the pumped refrigerant economizer mode or in the direct expansion mode.
    Type: Grant
    Filed: October 4, 2013
    Date of Patent: December 19, 2017
    Assignee: Liebert Corporation
    Inventors: Zongtao Lu, Greg Haggy, Timothy J. Schrader, Stephen Sillato, John F. Judge
  • Patent number: 9746224
    Abstract: A system includes an error module configured to integrate a difference between a superheat signal and a superheat setpoint to generate an error signal, wherein the superheat signal indicates suction superheat values of a compressor. A comparison module is configured to compare the error signal to a first predetermined threshold to generate a first comparison signal based on the comparison. A zero-crossing module is configured to compare a first count value to a second predetermined threshold to generate a second comparison signal. The first count value is generated based on at least one comparison between the superheat signal and the superheat setpoint. A setpoint module is configured to adjust the superheat setpoint based on the first comparison signal and the second comparison signal.
    Type: Grant
    Filed: November 13, 2013
    Date of Patent: August 29, 2017
    Assignee: Liebert Corporation
    Inventors: Zongtao Lu, Zhiyong Lin, Craig Ward, Benedict J. Dolcich, John F. Judge
  • Patent number: 9316424
    Abstract: A cooling system has a plurality of separate cooling stages including an upstream cooling stage having an upstream cooling circuit and a downstream cooling stage including a downstream cooling circuit, which are each a direct expansion cooling circuit including a tandem compressor. Each tandem compressor includes a fixed capacity compressor and a variable capacity compressor. A controller controls the fixed capacity compressor and variable capacity compressor of each tandem compressor based on a Call for Cooling, which of a plurality of ranges the Call for Cooling falls within, and whether the Call for Cooling is ramping up or ramping down.
    Type: Grant
    Filed: April 13, 2012
    Date of Patent: April 19, 2016
    Assignee: Liebert Corporation
    Inventors: Zhiyong Lin, Roger Noll, John F. Judge, Gary A. Helmink, Benedict J. Dolcich, Daniel J. Schutte, Timothy J. Schrader
  • Publication number: 20160061495
    Abstract: A cooling system has a cooling circuit that includes an evaporator disposed in a cabinet, a condenser, a compressor, a liquid/vapor separator tank and a liquid pump. The cooling circuit has a mode wherein the compressor and liquid pump are both on with the liquid pump pumping refrigerant through the evaporator with the refrigerant leaving the evaporator circulated to an inlet of the liquid/vapor separator tank and not to an inlet of the condenser. The cooling circuit also has a pumped refrigerant economizer mode wherein the liquid pump is on and the compressor is off and bypassed with the refrigerant leaving the evaporator circulated to the inlet of the condenser and not to the inlet of the liquid/vapor separator tank.
    Type: Application
    Filed: October 9, 2015
    Publication date: March 3, 2016
    Applicant: LIEBERT CORPORATION
    Inventors: Stephen Sillato, Timothy J. Schrader, Greg Haggy, Thomas Harvey, Zongtao Lu, John F. Judge
  • Publication number: 20150230367
    Abstract: A cooling system has a cabinet and a plurality of separate cooling stages including an upstream cooling stage and a downstream cooling stage. At least the upstream cooling state is a variable capacity cooling stage. Each cooling stage has a cooling circuit. Evaporators of the cooling circuits are arranged in the cabinet so that air passes over them in serial fashion. A controller when a Call for Cooling first reaches a point where cooling is needed, operating the upstream cooling circuit to provide cooling and not the downstream cooling circuit. When the Call for Cooling has increased to a second point, the controller additionally operates the downstream cooling circuit to provide cooling. The cooling capacity at which the upstream cooling circuit is being operated is less than its full capacity when the Call for Cooling reaches the second point.
    Type: Application
    Filed: April 22, 2015
    Publication date: August 13, 2015
    Applicant: Liebert Corporation
    Inventors: John F. JUDGE, Timothy J. SCHRADER, Stephen SILLATO, Roger NOLL, Gary A. HELMINK, Pierpaolo BARBATO, Giuseppe Dalla MANA, Lou MONNIER, Zhiyong LIN, Benedict J. DOLCICH, Daniel J. SCHUTTE, Greg HAGGY
  • Patent number: 9038404
    Abstract: A cooling system has a cabinet and a plurality of separate cooling stages including an upstream cooling stage and a downstream cooling stage. At least the upstream cooling state is a variable capacity cooling stage. Each cooling stage has a cooling circuit. Evaporators of the cooling circuits are arranged in the cabinet so that air passes over them in serial fashion. A controller when a Call for Cooling first reaches a point where cooling is needed, operating the upstream cooling circuit to provide cooling and not the downstream cooling circuit. When the Call for Cooling has increased to a second point, the controller additionally operates the downstream cooling circuit to provide cooling. The cooling capacity at which the upstream cooling circuit is being operated is less than its full capacity when the Call for Cooling reaches the second point.
    Type: Grant
    Filed: April 13, 2012
    Date of Patent: May 26, 2015
    Assignee: Liebert Corporation
    Inventors: John F. Judge, Timothy J. Schrader, Stephen Sillato, Roger Noll, Gary A. Helmink, Pierpaolo Barbato, Giuseppe Dalla Mana, Lou Monnier, Zhiyong Lin, Benedict J. Dolcich, Daniel J. Schutte, Greg Haggy, Thomas Harvey, Zongtao Lu
  • Publication number: 20150027139
    Abstract: A system including a setpoint module, a summer, a control module, and an expansion valve module. The setpoint module is configured to indirectly control sub-cooling of a condenser by adjusting a superheat setpoint based on (i) a return air temperature setpoint or a supply air temperature setpoint, and (ii) an outdoor ambient temperature. The summer is configured to determine an error between the superheat setpoint and a superheat level of a compressor. The control module is configured to generate a control signal based on the error. The expansion valve module is configured to electronically control a state of an expansion valve based on the control signal.
    Type: Application
    Filed: October 15, 2014
    Publication date: January 29, 2015
    Applicant: Liebert Corporation
    Inventors: Zhiyong LIN, Benedict J. DOLCICH, John F. JUDGE
  • Publication number: 20140137585
    Abstract: A system includes an error module configured to integrate a difference between a superheat signal and a superheat setpoint to generate an error signal, wherein the superheat signal indicates suction superheat values of a compressor. A comparison module is configured to compare the error signal to a first predetermined threshold to generate a first comparison signal based on the comparison. A zero-crossing module is configured to compare a first count value to a second predetermined threshold to generate a second comparison signal. The first count value is generated based on at least one comparison between the superheat signal and the superheat setpoint. A setpoint module is configured to adjust the superheat setpoint based on the first comparison signal and the second comparison signal.
    Type: Application
    Filed: November 13, 2013
    Publication date: May 22, 2014
    Inventors: Zongtao LU, Zhiyong LIN, Craig WARD, Benedict J. DOLCICH, John F. JUDGE
  • Publication number: 20140033753
    Abstract: A cooling system has a direct expansion mode and a pumped refrigerant economizer mode and a controller. The controller includes a load estimator that estimates real-time indoor load on the cooling system and uses the estimated real-time indoor load to determine whether to operate the cooling system in the pumped refrigerant economizer mode or in the direct expansion mode.
    Type: Application
    Filed: October 4, 2013
    Publication date: February 6, 2014
    Inventors: Zongtao LU, Greg HAGGY, Timothy J. SCHRADER, Stephen SILLATO, John F. JUDGE
  • Publication number: 20130139529
    Abstract: An air conditioner system including a condenser fan, an ambient temperature sensor, a refrigerant pressure sensor, and a controller. The ambient temperature sensor is to sense ambient temperature at the system. The refrigerant pressure sensor is to sense pressure of a refrigerant of the system. The target refrigerant pressure module is to identify an optimum pressure of the refrigerant in the system. The controller is to generate an output representing a speed of the condenser fan operable to maintain the pressure of the refrigerant at about the optimum pressure as the ambient temperature of the system changes.
    Type: Application
    Filed: June 7, 2012
    Publication date: June 6, 2013
    Applicant: LIEBERT CORPORATION
    Inventors: Zongtao Lu, Jianping Li, Hongyu Zhang, Wanlai Lin, Stephen Sillato, Roger Noll, John F. Judge, Yizhou Fan, Craig Ward
  • Publication number: 20130098086
    Abstract: A cooling system has a cooling circuit that includes an evaporator disposed in a cabinet, a condenser, a compressor, an electronic expansion valve and a liquid pump. a direct expansion mode and a pumped refrigerant economizer mode. When the cooling system is in the pumped refrigerant economizer mode, the controller controls a temperature of the refrigerant to a refrigerant temperature set point by regulating a speed of a fan of the condenser, controls a temperature of air in a room in which the cabinet is disposed to a room air temperature setpoint by regulating a speed of the liquid pump, and maintains a pressure differential across the liquid pump within a given range by regulating an open position of an electronic expansion valve.
    Type: Application
    Filed: April 13, 2012
    Publication date: April 25, 2013
    Applicant: Liebert Corporation
    Inventors: Stephen Sillato, Timothy J. Schrader, Greg Haggy, Thomas Harvey, Zongtao Lu, John F. Judge
  • Publication number: 20130098088
    Abstract: A cooling system has a plurality of separate cooling stages including an upstream cooling stage having an upstream cooling circuit and a downstream cooling stage including a downstream cooling circuit, which are each a direct expansion cooling circuit including a tandem compressor. Each tandem compressor includes a fixed capacity compressor and a variable capacity compressor. A controller controls the fixed capacity compressor and variable capacity compressor of each tandem compressor based on a Call for Cooling, which of a plurality of ranges the Call for Cooling falls within, and whether the Call for Cooling is ramping up or ramping down.
    Type: Application
    Filed: April 13, 2012
    Publication date: April 25, 2013
    Applicant: Liebert Corporation
    Inventors: Zhiyong Lin, Roger Noll, John F. Judge, Gary A. Helmink, Benedict J. Dolcich, Daniel J. Schutte, Timothy J. Schrader
  • Publication number: 20130098085
    Abstract: A cooling system has a cabinet and a plurality of separate cooling stages including an upstream cooling stage and a downstream cooling stage. At least the upstream cooling state is a variable capacity cooling stage. Each cooling stage has a cooling circuit. Evaporators of the cooling circuits are arranged in the cabinet so that air passes over them in serial fashion. A controller when a Call for Cooling first reaches a point where cooling is needed, operating the upstream cooling circuit to provide cooling and not the downstream cooling circuit. When the Call for Cooling has increased to a second point, the controller additionally operates the downstream cooling circuit to provide cooling. The cooling capacity at which the upstream cooling circuit is being operated is less than its full capacity when the Call for Cooling reaches the second point.
    Type: Application
    Filed: April 13, 2012
    Publication date: April 25, 2013
    Applicant: Liebert Corporation
    Inventors: John F. Judge, Timothy J. Schrader, Stephen Sillato, Roger Noll, Gary A. Helmink, Pierpaolo Barbato, Giuseppe Dalla Mana, Lou Monnier, Zhiyong Lin, Benedict J. Dolcich, Daniel J. Schutte, Greg Haggy, Thomas Harvey, Zongtao Lu
  • Publication number: 20130091874
    Abstract: A variable flow refrigerant system having a compressor and one or a plurality of evaporators. The suction at one or the plurality of evaporators for the input to the compressor is monitored and generally corresponds to the minimum pressure of the refrigerant. The pressure is associated with a temperature and is controlled to always be above the dew point temperature of the room.
    Type: Application
    Filed: April 3, 2012
    Publication date: April 18, 2013
    Applicant: LIEBERT CORPORATION
    Inventors: Stephen Sillato, Timothy J. Schrader, Lou Monnier, John F. Judge
  • Patent number: 8209057
    Abstract: A universal control panel for controlling operation of a cooling component. The universal control panel may have a variable frequency drive (VFD) that incorporates an input voltage and frequency sensing circuit; and logic, memory and communications circuits. The VFD accepts a plurality of differing input signals, analyzes the input signals and generates an output signal having a desired voltage and frequency to provide real time control over an electrical component operably associated with the cooling component. The VFD controls the cooling component in relation to changes in at least one of sensed pressure and a sensed temperature of a fluid, to dampen response of the electrical component, to thus achieve more efficient use of the cooling component being used to cool the fluid.
    Type: Grant
    Filed: June 26, 2009
    Date of Patent: June 26, 2012
    Assignee: Liebert Corporation
    Inventors: John F. Judge, James W. Holdren, Wanlai Lin
  • Publication number: 20100125371
    Abstract: A universal control panel for controlling operation of a cooling component. The universal control panel may have a variable frequency drive (VFD) that incorporates an input voltage and frequency sensing circuit; and logic, memory and communications circuits. The VFD accepts a plurality of differing input signals, analyzes the input signals and generates an output signal having a desired voltage and frequency to provide real time control over an electrical component operably associated with the cooling component. The VFD controls the cooling component in relation to changes in at least one of sensed pressure and a sensed temperature of a fluid, to dampen response of the electrical component, to thus achieve more efficient use of the cooling component being used to cool the fluid.
    Type: Application
    Filed: June 26, 2009
    Publication date: May 20, 2010
    Applicant: Liebert Corporation
    Inventors: John F. Judge, James W. Holdren, Wanlai Lin
  • Patent number: 7707850
    Abstract: A liquid refrigerant drainage mechanism is described for use in a flooded evaporator to mitigate liquid carryover. The drainage mechanism can trap liquid refrigerant droplets, create a liquid column to overcome a pressure difference across the mechanism and drain liquid back to the pool in the evaporator. The drainage mechanism is disposed in a suction baffle, and has a mesh pad and a tapered pipe secured to the bottom of the baffle. The pipe has a drainage aperture at one end to allow the accumulated liquid refrigerant to return to the refrigerant pool below. The mesh pad helps to separate liquid droplets that coalesce and fall into the tapered pipe. By using this liquid drainage mechanism in conjunction with a suction baffle, liquid carryover can be reduced and chiller performance improved.
    Type: Grant
    Filed: June 7, 2007
    Date of Patent: May 4, 2010
    Assignee: Johnson Controls Technology Company
    Inventors: Jun Wang, Mahesh Valiya Naduvath, John F. Judge
  • Publication number: 20080302130
    Abstract: A liquid refrigerant drainage mechanism is described for use in a flooded evaporator to mitigate liquid carryover. The drainage mechanism can trap liquid refrigerant droplets, create a liquid column to overcome a pressure difference across the mechanism and drain liquid back to the pool in the evaporator. The drainage mechanism is disposed in a suction baffle, and has a mesh pad and a tapered pipe secured to the bottom of the baffle. The pipe has a drainage aperture at one end to allow the accumulated liquid refrigerant to return to the refrigerant pool below. The mesh pad helps to separate liquid droplets that coalesce and fall into the tapered pipe. By using this liquid drainage mechanism in conjunction with a suction baffle, liquid carryover can be reduced and chiller performance improved.
    Type: Application
    Filed: June 7, 2007
    Publication date: December 11, 2008
    Applicant: Johnson Controls Technology Co.
    Inventors: Jun Wang, Mahesh Valiya Naduvath, John F. Judge